
CSE4303 Homework 0 509191 Zheyuan Wu

1. Server code

(a) Screenshot or well-formatted copy of code

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>
#inc lude <sys / socket . h>
#inc lude <arpa / i n e t . h>
#inc lude <errno . h> // f o r pe r ro r ()
#inc lude <uni s td . h> // f o r c l o s e ()

// load environment v a r i a b l e s from . env f i l e
#inc lude <fstream>
#inc lude <c s t d l i b >

void load env (const std : : s t r i n g& path) {
std : : i f s t r e a m f (path) ;
s td : : s t r i n g l i n e ;
whi l e (std : : g e t l i n e (f , l i n e)) {

i f (l i n e . empty () | | l i n e [0] == ’#’) cont inue ;
auto pos = l i n e . f i n d (’=’) ;
i f (pos == std : : s t r i n g : : npos) cont inue ;

std : : s t r i n g key = l i n e . subs t r (0 , pos) ;
s td : : s t r i n g va l = l i n e . subs t r (pos + 1) ;

#i f d e f WIN32
putenv s (key . c s t r () , va l . c s t r ()) ;

#e l s e
setenv (key . c s t r () , va l . c s t r () , 1) ;

#e n d i f
}

}

i n t main (void) {
p r i n t f (” Server s t a r t i n g . . . \ n”) ;
load env (” . env”) ;

// Dec lare v a r i a b l e s
const char ∗ s e r v e r i p = std : : getenv (”SERVER IP”) ;
const i n t s e r v e r p o r t = std : : a t o i (std : : getenv (”SERVER PORT”

)) ;
char c l i e n t m e s s a g e [2 0 4 8] ;
char se rve r mes sage [2 0 4 8] ;
const char ∗ custom message=” Server : He l l o from se rver , ” ;

// debug

1

CSE4303 Homework 0 509191 Zheyuan Wu

p r i n t f (” Server s t a r t i n g at IP : %s , Port : %d\n” , s e r v e r i p ,
s e r v e r p o r t) ;

// Create socket
const i n t s e r v e r s o c k e t = socket (AF INET , SOCK STREAM, 0) ;
i f (s e r v e r s o c k e t == −1) {

per ro r (” Fa i l ed to c r e a t e socke t ”) ;
r e turn 1 ;

}

// Bind to the s e t port and IP
s t r u c t sockaddr in s e rve r addr ;
s e rv e r addr . s i n f a m i l y = AF INET ;
s e rve r addr . s i n p o r t = htons (s e r v e r p o r t) ;
i n e t p ton (AF INET , s e r v e r i p , &se rve r addr . s i n addr) ;

i f (bind (s e r v e r s o c k e t , (s t r u c t sockaddr ∗)&server addr ,
s i z e o f (s e rv e r addr)) == −1) {
per ro r (” Fa i l ed to bind socket ”) ;
c l o s e (s e r v e r s o c k e t) ;
r e turn 1 ;

}
p r i n t f (”Done with b inding with IP : %s , Port : %d\n” ,

s e r v e r i p , s e r v e r p o r t) ;

// L i s t en f o r c l i e n t s :
const char ∗ c l i e n t i p = std : : getenv (”CLIENT IP”) ;
i f (l i s t e n (s e r v e r s o c k e t , 1) == −1) {

per ro r (” Fa i l ed to l i s t e n on socke t ”) ;
c l o s e (s e r v e r s o c k e t) ;
r e turn 1 ;

}
p r i n t f (” L i s t en ing f o r incoming connect i ons . . . \ n”) ;

// Accept an incoming connect ion
s t r u c t sockaddr in c l i e n t a d d r ;
s o c k l e n t c l i e n t a d d r l e n = s i z e o f (c l i e n t a d d r) ;
i n t c l i e n t s o c k e t = accept (s e r v e r s o c k e t , (s t r u c t sockaddr

∗)&c l i e n t a d d r , &c l i e n t a d d r l e n) ;
i f (c l i e n t s o c k e t == −1) {

per ro r (” Fa i l ed to accept connect ion ”) ;
c l o s e (s e r v e r s o c k e t) ;
r e turn 1 ;

}
p r i n t f (” C l i en t connected at IP : %s \n” , c l i e n t i p) ;

2

CSE4303 Homework 0 509191 Zheyuan Wu

// Receive c l i e n t ’ s message

// c l ean e x i s i n g b u f f e r
memset (c l i en t mes sage , 0 , s i z e o f (c l i e n t m e s s a g e)) ;

recv (c l i e n t s o c k e t , c l i en t mes sage , s i z e o f (c l i e n t m e s s a g e) ,
0) ;

p r i n t f (”Msg from c l i e n t : %s ” , c l i e n t m e s s a g e) ;

// Respond to c l i e n t
// prepare s e r v e r message
memset (server message , 0 , s i z e o f (s e rve r mes sage)) ;
;

// add my name in the back as re sponse .
std : : s n p r i n t f (server message , s i z e o f (s e rve r mes sage) , ”%s%s

” , custom message , s t r t o k (c l i en t mes sage , ” : ”)) ;
i f (send (c l i e n t s o c k e t , se rver message , s i z e o f (

s e rve r mes sage) , 0) == −1) {
per ro r (” Fa i l ed to send message”) ;
c l o s e (c l i e n t s o c k e t) ;
c l o s e (s e r v e r s o c k e t) ;
r e turn 1 ;

}
p r i n t f (”Response sent to c l i e n t : %s \n” , s e rve r mes sage) ;

// Close the socket
c l o s e (c l i e n t s o c k e t) ;
c l o s e (s e r v e r s o c k e t) ;

r e turn 0 ;
}

(b) Quick overview of what the code does in your own words

First, I created an environment file to ensure that the ip address from both cpp file gets
the same ip address. I defined the ip as follows:

NET SUBNET=172.30 .0 .0/24
SERVER IP=172 .30 .0 .10
CLIENT IP=172 .30 .0 .11
SERVER PORT=3030

Secondly, I made load env function by modifying the scripts from the internet.

After that, in main function, we set the variables server ip, server port, client message

3

CSE4303 Homework 0 509191 Zheyuan Wu

buffer and server message buffer.

Then, we created a socket, bind it to the set port and IP. If then everything goes well,
we listen for incoming connections from client side and retrieve client ip. After that, we
accept an incoming connection, receive client’s message, and respond to client using the
client name defined in client code and concat with our custom response defined before.

The server will quit automatically when we response 1 message from client.

4

CSE4303 Homework 0 509191 Zheyuan Wu

2. Client code

(a) Screenshot or well-formatted copy of code

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>
#inc lude <sys / socket . h>
#inc lude <arpa / i n e t . h>
#inc lude <errno . h>
#inc lude <uni s td . h> // f o r c l o s e ()

// load environment v a r i a b l e s from . env f i l e
#inc lude <fstream>
#inc lude <c s t d l i b >

void load env (const std : : s t r i n g& path) {
std : : i f s t r e a m f (path) ;
s td : : s t r i n g l i n e ;
whi l e (std : : g e t l i n e (f , l i n e)) {

i f (l i n e . empty () | | l i n e [0] == ’#’) cont inue ;
auto pos = l i n e . f i n d (’=’) ;
i f (pos == std : : s t r i n g : : npos) cont inue ;

std : : s t r i n g key = l i n e . subs t r (0 , pos) ;
s td : : s t r i n g va l = l i n e . subs t r (pos + 1) ;

#i f d e f WIN32
putenv s (key . c s t r () , va l . c s t r ()) ;

#e l s e
setenv (key . c s t r () , va l . c s t r () , 1) ;

#e n d i f
}

}

i n t main (void) {
l oad env (” . env”) ;
// Dec lare v a r i a b l e s
const char ∗ s e r v e r i p = std : : getenv (”SERVER IP”) ;
const i n t s e r v e r p o r t = std : : a t o i (std : : getenv (”SERVER PORT”

)) ;
p r i n t f (” Connecting to s e r v e r %s :%d\n” , s e r v e r i p ,

s e r v e r p o r t) ;

char c l i e n t m e s s a g e [1 0 2 4] ;
char se rve r mes sage [1 0 2 4] ;
const char ∗ custom message=”Zheyuan Wu: ” ;

5

CSE4303 Homework 0 509191 Zheyuan Wu

// Create socket :
i n t c l i e n t s o c k e t = socket (AF INET , SOCK STREAM, 0) ;
i f (c l i e n t s o c k e t == −1) {

per ro r (” Fa i l ed to c r e a t e socke t ”) ;
r e turn 1 ;

} e l s e {
p r i n t f (” Socket c r ea ted s u c c e s s f u l l y \n”) ;

}

// Send connect ion reques t to se rver , be sure to s e t por
tand IP the same as se rver −s i d e

s t r u c t sockaddr in s e rve r addr ;
s e rv e r addr . s i n f a m i l y = AF INET ;
s e rve r addr . s i n p o r t = htons (s e r v e r p o r t) ;
i n e t p ton (AF INET , s e r v e r i p , &se rve r addr . s i n addr) ;

i f (connect (c l i e n t s o c k e t , (s t r u c t sockaddr ∗)&server addr ,
s i z e o f (s e rv e r addr)) == −1) {
per ro r (” Fa i l ed to connect to s e r v e r ”) ;
c l o s e (c l i e n t s o c k e t) ;
r e turn 1 ;

} e l s e {
p r i n t f (”Connected to s e r v e r s u c c e s s f u l l y \n”) ;

}

// Get input from the user :
p r i n t f (” Enter message sent to the s e r v e r (type \\ qu i t to

e x i t) : ”) ;
// c l ean the b u f f e r
memset (c l i en t mes sage , 0 , s i z e o f (c l i e n t m e s s a g e)) ;
i f (f g e t s (c l i en t mes sage , s i z e o f (c l i e n t m e s s a g e) , s td in) ==

NULL) {
// EOF or e r r o r read ing from std in , e x i t the loop
per ro r (” Error read ing from s td in ”) ;
r e turn 1 ;

}

whi le (strcmp (c l i en t mes sage , ”\\ qu i t \n”) != 0) {

// Send the message to s e r v e r :
// add my name in the f r o n t
char b u f f e r [2 0 4 8] ;
s td : : s n p r i n t f (bu f f e r , s i z e o f (b u f f e r) , ”%s%s ” ,

custom message , c l i e n t m e s s a g e) ;
send (c l i e n t s o c k e t , bu f f e r , s i z e o f (b u f f e r) , 0) ;

6

CSE4303 Homework 0 509191 Zheyuan Wu

// Receive the s e r v e r ’ s re sponse :
recv (c l i e n t s o c k e t , se rver message , s i z e o f (

s e rve r mes sage) , 0) ;

p r i n t f (” Server ’ s r e sponse : %s \n” , s e rve r mes sage) ;

p r i n t f (” Enter message sent to the s e r v e r (type \\ qu i t
to e x i t) : ”) ;

// c l ean the b u f f e r
memset (c l i en t mes sage , 0 , s i z e o f (c l i e n t m e s s a g e)) ;
memset (server message , 0 , s i z e o f (s e rve r mes sage)) ;

i f (f g e t s (c l i en t mes sage , s i z e o f (c l i e n t m e s s a g e) , s td in
) == NULL) {
// EOF or e r r o r read ing from std in , e x i t the loop
per ro r (” Error read ing from s td in ”) ;
break ;

}
}

// Close the socket
c l o s e (c l i e n t s o c k e t) ;

r e turn 0 ;
}

(b) The message you send from the client to the server should include your name!

We use custom message to ensure that each message we send to the server starts with
our name.

(c) Quick overview of what the code does in your own words.

First we use the same function defined in server.cpp to load the environment file to
ensure that the server and client gets the same ip address so I don’t need to check it
anymore.

Secondly, we build sockets that connects to server by address and port provided. If
everything goes well, we will ask for user to input the message they like and send them
to server with my name defined in custom message. Then concat the string to the buffer
and send them to the server.

After that we listen for response from the server and print it and wait for user to input
the next message.

7

CSE4303 Homework 0 509191 Zheyuan Wu

The server will quit automatically when we type
quit.

8

CSE4303 Homework 0 509191 Zheyuan Wu

3. Testing

(a) Provide and overview of the setup you used to test your client/server program. You
should not run them on the same host (same machine/simulated machine. Each machine
should have a unique IP, use the Sniffing and Snooping SeedLab setup).

I use docker compose to run the server and client on separate containers with independent
IP addresses.

The docker compose file is provided as follows and env is defined in before.

s e r v i c e s :
s e r v e r :

image : debian : bookworm−s l im
container name : hw1−s e r v e r
work ing d i r : /app
e n v f i l e :

− . env
networks :

net−hw1 :
ipv4 addre s s : ${SERVER IP}

volumes :
− . / bin / s e r v e r : / usr / l o c a l / bin / s e r v e r : ro

ent rypo int : [”bash” , ”− l c ” , ”apt−get update && apt−get
i n s t a l l −y −−no−i n s t a l l −recommends l i b s t d c++6 ip route2 ;
exec s tdbuf −oL −eL / usr / l o c a l / bin / s e r v e r ”]

c l i e n t :
image : debian : bookworm−s l im
container name : hw1−c l i e n t
work ing d i r : /app
e n v f i l e :

− . env
networks :

net−hw1 :
ipv4 addre s s : ${CLIENT IP}

depends on :
− s e r v e r

s td in open : t rue
t ty : t rue
volumes :

− . / bin / c l i e n t : / usr / l o c a l / bin / c l i e n t : ro
ent rypo int : [”bash” , ”− l c ” , ”apt−get update && apt−get

i n s t a l l −y −−no−i n s t a l l −recommends l i b s t d c++6 ip route2 ;
exec s tdbuf −oL −eL / usr / l o c a l / bin / c l i e n t ”]

networks :
net−hw1 :

9

CSE4303 Homework 0 509191 Zheyuan Wu

name : net−hw1
d r i v e r : br idge
ipam :

c o n f i g :
− subnet : ${NET SUBNET}

(b) Provide screenshots showing your test in action

i. Likely at least one of the server receiving the connection and message

ii. Likely at least one of the client receiving and printing the return message from the
server

10

CSE4303 Homework 0 509191 Zheyuan Wu

4. Extra credit

a. Run your client and server on the HostA and HostB on the SeedVM docker setup for
studio 1. Prior to running the client/server, use the SeedAttacker VM to run wireshark
and sniff all packets on the network. Use Wireshark to trace the TCP connection from
client to server and find the packets containing the message sent from client to server.
Is an eavesdropper able to obtain the contents of the message? Include a section in your
report for extra credit. Document the work you did and include at least one screenshot
showing the Wireshark packet capture. In this screenshot, make sure one of the packets
containing the client message is the actively clicked on packet and the message/part of
the message is visible in the detailed packet window.

Here is the screenshot of wireshark packet capture for client message

Here is the screenshot of wireshark packet capture for server message

11

