CSE4303 Homework 0 509191 Zheyuan Wu

1. Server code
(a) Screenshot or well-formatted copy of code

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <arpa/inet .h>

#include <errno.h> // for perror()
#include <unistd.h> // for close()

// load environment variables from .env file

#include <fstream>
#include <cstdlib>

void load_env (const std::string& path) {
std ::ifstream f(path);
std ::string line;

while (std:: getline(f, line)) {
if (line.empty() || line[0] == '#’) continue;
auto pos = line.find('=");
if (pos = std::string::npos) continue;

std::string key = line.substr (0, pos);
std::string val = line.substr(pos + 1);

#ifdef _WIN32

_putenv_s(key.c_str(), val.c_str());
#else

setenv (key.c_str (), val.c_str (), 1);

#endif

}

int main(void){
printf(”Server-starting ...\ n”);
load_env (7 .env”);

// Declare variables
const char xserver_ip = std::getenv(”SERVERIP”);
server_port = std::atoi(std:: getenv (”SERVERPORT”

const int
)

char client_message [2048];

char server_message[2048];

const char % custom_message="Server:-Hello-from-server ,-”;

// debug

CSE4303 Homework 0 509191 Zheyuan Wu

printf(” Server-starting-at-IP:-%s,-Port:-%d\n” , server_ip ,
server_port);

// Create socket
const int server_socket = socket (AFINET, SOCKSTREAM, 0);

if (server_socket — —1) {
perror (” Failed -to-create-socket”);
return 1;

}

// Bind to the set port and IP

struct sockaddr_in server_addr;
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(server_port);

inet_pton (AFINET, server_ip, &server_addr.sin_addr);

if (bind(server_socket , (struct sockaddr=)&server_addr,
sizeof (server_addr)) = —1) {
perror (” Failed -to-bind -socket”);
close (server_socket);
return 1;

}

printf(”Done-with-binding -with-IP: -%s, -Port: -%d\n” ,
server_ip , server_port);

// Listen for clients:
const char xclient_ip = std::getenv (”CLIENT_IP”);
if (listen (server_socket, 1) = —1) {
perror (” Failed -to-listen -on-socket”);
close(server_socket);
return 1;

}

printf(” Listening - for-incoming-connections...\n”);

// Accept an incoming connection
struct sockaddr_in client_addr;

socklen_t client_addr_len = sizeof(client_addr);

int client_socket = accept(server_socket, (struct sockaddr
x)&client_addr , &client_addr_len);

if (client_socket =— —1) {

perror (” Failed -to-accept-connection”);
close (server_socket);
return 1;

}

printf(” Client -connected-at-IP:-%s-\n”, client_ip);

CSE4303 Homework 0 509191 Zheyuan Wu

memset (client_message , 0, sizeof(client_message));
recv(client_socket , client_message , sizeof(client_message),

0);
printf(”Msg-from-client:-%s”, client_message);

memset (server_message , 0, sizeof(server_message));

)

std::snprintf(server_message , sizeof(server_message), "%s%s

7, custom_message, strtok (client_message, 7:7));
if (send(client_socket , server_message, sizeof (
server_message), 0) = —1) {

perror (” Failed - to-send -message”) ;
close(client_socket);
close(server_socket);

return 1;

}

printf(” Response-sent-to-client:-%s\n”, server_message);

close(client_socket);
close(server_socket);

return 0;

}

(b) Quick overview of what the code does in your own words

First, I created an environment file to ensure that the ip address from both cpp file gets
the same ip address. I defined the ip as follows:

NET SUBNET=172.30.0.0/24
SERVER IP=172.30.0.10
CLIENT IP=172.30.0.11
SERVER PORT=3030

Secondly, I made 1load_env function by modifying the scripts from the internet.

After that, in main function, we set the variables server ip, server port, client message

CSE4303 Homework 0 509191 Zheyuan Wu

buffer and server message buffer.

Then, we created a socket, bind it to the set port and IP. If then everything goes well,
we listen for incoming connections from client side and retrieve client ip. After that, we
accept an incoming connection, receive client’s message, and respond to client using the
client name defined in client code and concat with our custom response defined before.

The server will quit automatically when we response 1 message from client.

CSE4303 Homework 0

509191 Zheyuan Wu

2. Client code

(a) Screenshot or well-formatted copy

#include <stdio.h>

of code

#include <string.h>
#include <sys/socket.h>
#include <arpa/inet .h>
#include <errno.h>
#include <unistd.h> // for close()
load environment variables from .env file

#’include <fstream>
#include <cstdlib>

void load_env (const std::

std ::ifstream f(path)
std ::string line;

while (std:: getline (f

if (line.empty ()

auto pos =

if (pos = std::s

std ::
std ::

string key =
string val =

#ifdef _WIN32
_putenv_s

#else

)

[
line . find (’'=");

n

string& path) {

?

, line)
|| line

'#7) continue;

tring ::npos) continue;

line .substr (0, pos);
line .substr (pos + 1);

(key.c_str (), val.c_str());

setenv (key.c_str (), val.c_str (), 1);

#endif

}

int main(void){
load_env (7 .env”);
Declare
const char *server_ip
const int server_port
)
printf(” Connecting-to
server_port);

variables

= std:: getenv ("SERVER.IP”) ;
= std::atoi(std:: getenv (”SERVER PORT”

-server -%s:%d\n” , server_ip ,

char client_message[1024];
char server_message[1024];
const char * custom_message="Zheyuan-Wu: -";

CSE4303 Homework 0 509191 Zheyuan Wu

// Create socket:
int client_socket = socket (AFINET, SOCKSTREAM, 0);

if (client_socket = —1) {
perror (” Failed -to-create-socket”);
return 1;

telse{

printf(”Socket-created-successfully\n”);
}

// Send connection request to server, be sure to set por
tand IP the same as server—side

struct sockaddr_in server_addr;

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(server_port);

inet_pton (AFINET, server_ip, &server_addr.sin_addr);

if (connect(client_socket , (struct sockaddr=)&server_addr,
sizeof (server_addr)) = —1) {
perror (” Failed -to-connect-to-server”);
close (client_socket);
return 1;

telse{

printf(” Connected-to-server-successfully\n”);
}

// Get input from the user:

printf(” Enter -message-sent-to-the-server-(type-\\quit-to-
exit):-7);

// clean the buffer

memset (client _message , 0, sizeof(client_message));

if (fgets(client_message, sizeof(client_message), stdin) —
NULL) {
// EOF or error reading from stdin, exit the loop
perror (”Error-reading - from-stdin”);
return 1;

}
while (strcmp(client_message, "\\quit\n”) != 0) {

// Send the message to server:

// add my name in the front

char buffer [2048];

std::snprintf(buffer , sizeof (buffer), "%s%s”,
custom_message , client_message);

send (client_socket , buffer, sizeof(buffer), 0);

CSE4303 Homework 0 509191 Zheyuan Wu

(b)

()

recv(client_socket , server_message, sizeof(
server_message), 0);

printf(” Server ’s-response: -%s\n”, server_message);

printf(”Enter-message-sent-to-the-server-(type-\\quit -
to-exit):-");

memset (client_message , 0, sizeof(client_message));
memset (server_message , 0, sizeof(server_message));

if (fgets(client_message, sizeof(client_message), stdin
) = NULL) {

perror (”Error-reading - from-stdin”);
break ;

close(client_socket);

return 0;

}

The message you send from the client to the server should include your name!

We use custom message to ensure that each message we send to the server starts with
our name.

Quick overview of what the code does in your own words.

First we use the same function defined in server.cpp to load the environment file to
ensure that the server and client gets the same ip address so I don’t need to check it
anymore.

Secondly, we build sockets that connects to server by address and port provided. If
everything goes well, we will ask for user to input the message they like and send them
to server with my name defined in custom message. Then concat the string to the buffer
and send them to the server.

After that we listen for response from the server and print it and wait for user to input
the next message.

CSE4303 Homework 0 509191 Zheyuan Wu

The server will quit automatically when we type
quit.

CSE4303 Homework 0 509191 Zheyuan Wu

3. Testing

(a) Provide and overview of the setup you used to test your client/server program. You
should not run them on the same host (same machine/simulated machine. Each machine
should have a unique IP, use the Sniffing and Snooping SeedLab setup).

I use docker compose to run the server and client on separate containers with independent
IP addresses.

The docker compose file is provided as follows and env is defined in before.

services:
server :
image: debian:bookworm—slim
container_name: hwl-server
working_dir: /app
env_file:
— .env
networks:
net—hwl:
ipv4d_address: ${SERVER.IP}
volumes:
— ./bin/server:/usr/local/bin/server:ro
entrypoint: [”bash”, "—lc”, "apt—get-update-&&-apt—get -
install ~——y-—mno—install —recommends-libstdc++46-iproute?2; -
exec-stdbuf-—oL-—eL-/usr/local/bin/server”]

client :

image: debian:bookworm—slim
container_name: hwl—client
working _dir: /app
env_file:

— .env
networks:

net—hwl:

ipvd_address: ${CLIENT_IP}

depends_on:

— server
stdin_open: true
tty: true
volumes:
— ./bin/client:/usr/local/bin/client :ro
entrypoint: ["bash”, 7—1c¢”, "apt-—get-update-&&-apt—get -

install ~—y-—mno—install —recommends-libstdc++6-iproute2; -
exec-stdbuf-—oL-—eL-/usr/local/bin/client”]

networks:
net—hwl:

CSE4303 Homework 0 509191 Zheyuan Wu

name: net—hwl
driver: bridge
ipam:
config:
— subnet: ${NET_SUBNET}

(b) Provide screenshots showing your test in action

i. Likely at least one of the server receiving the connection and message

ii. Likely at least one of the client receiving and printing the return message from the
server

Hi, this

10

CSE4303 Homework 0

509191

Zheyuan Wu

4. Extra credit

a. Run your client and server on the HostA and HostB on the SeedVM docker setup for
studio 1. Prior to running the client/server, use the SeedAttacker VM to run wireshark
and sniff all packets on the network. Use Wireshark to trace the TCP connection from
client to server and find the packets containing the message sent from client to server.
Is an eavesdropper able to obtain the contents of the message? Include a section in your
report for extra credit. Document the work you did and include at least one screenshot
showing the Wireshark packet capture. In this screenshot, make sure one of the packets
containing the client message is the actively clicked on packet and the message/part of
the message is visible in the detailed packet window.

Here is the screenshot of wireshark packet capture for client message

2 0.000036589
3 0.000182250
4 6.000207350

=6 0.040668060
75.411740922
8 6.435656263
97.459591976

» Ethernet II, Src: 7e:c5:b9:69:04:6¢ (7€:c5:b9:69:04
» Internet Protocol Version 4, Src: 172.3.0.11, Ds
» Transmission Control Protocol, Src Port: 41892, Dst
» Data (2048 bytes)

© 7 bra3fat2153fee: <live capture in progress>

Here is the screenshot of wireshark packet capture for server message

e2 30:1f:03
©€2:96:94:30:1F:03 ARP

TP 66 3030
Tcp 2114 3030

1892 [PSH, ACK] Seq=

ARP 42 wiho has 172.39.0.16? Tell 172.30.0.11
42 viho has 172.30.0.16? Tell 172.30.0.11

» Frame 1: Packet, 2114 bytes on wire (16912 bits), 2114 bytes captured (16912 bits) on interface | 0000 e2 96 94 30 1f 03 7e C5 b9 69 04 6c 68 00 45 00
16C), Dst: €2:96:94:30:1f:03 (€2:96:94:30:1f: ©8 34 93 95 40 00 40 06 46 dd ac le 60 6b ac le

72.30.6.10 20 00 0a a3 a4 6b d6 3e 88 Od 32 d6 55 4a 8a 80 18

Port: 3630, Seq: 1, Ack: 1, Len: 2048 ©1 6 60 78 00 00 61 61 08 0a ad d1 2a 83 30 de

2c 20 74 68 69 73 20 69 73 20 63 6c 69 65 be 74
0a 00 40 dc 7d a6 fe 7f 00 60 48 7a 7f f7 c3 72
©0 00 06 60 60 60 00 00 00 60 10 7c 2e f7 3 72
00 00 01 60 60 60 00 00 00 60 00 00 00 00 60 00
@0 00 01 60 60 0O 00 00 00 60 30 d1 7e 7 c3 72
00 00 b8 db 7d a6 fe 7f 00 00 co db 7d a6 fe 7t
00 00 b8 d4 7e f7 c3 72 00 60 60 00 00 00 0O 00
00 00 bo da 7d a6 fe 7f 00 60 30 db 7d a6 fe 7f
00 00 50 dc 7d a6 fe 7f 00 60 61 00 00 00 60 60
00 00 €0 22 82 f7 c3 72 00 00 ff ff ff f 00 00
00 00 d €7 7e f7 c3 72 00 60 dO 1a 82 f7 c3 72
©0 00 00 60 60 60 67 00 00 60 €0 22 82 7 3 72
00 00 00 60 60 G0 00 00 00 60 00 00 00 00 60 00

Packets: 9

= PSH, ACK] Seq=1 Ack=1 Win=502 Lel
41892 [ACK] Seq=1 ACk=2049 Win=542 Len=0 TSval-810486891 TSecr=2916166275
49 Win=542 Len=2048 TSval-810486891 TSecr=2916166275

Tce 66 41892 . 3030 [ACK] Seq=2049 A TSval=2916166275 TSecr=810486891
Tce 66 41892 — 3030 [ACK] Seq=2049 A TSVal=2916166316 TSecr=810486891
ARP 42 Who has 172.3.0.107 Tell 172.30.0.11

0.~ il E
4.0 F
> 2.0
x *oN
Zheyua n Wu: Hi
, this i s client
e} Hz- o1
loor
0~r
} }
~or
} 0}
P}
W
~or r
"oy
0~ -r

Capturing from br-43fa12153f6e » 0O ®
File Edit View Go Capture Analyze Statistics Telephony Wireless Iools Help
AEdeoDPDHORE @< >y -~-EEQRQQEH
(W[Apply 2 display filter =0
No. Time Protocol Length Info
r TCP 2114 1=2916166275 TSecr=810461674

Profile: Default

11

Capturing from br-43fa12153f6e - o x
File Edit View Go Capture Analyze Statistics Telephony wWireless Tools Help
RE A >»I-~ZEQQQEH
(RTApply a display filter ... <Ctrl-/> =)o
No. Time Sour Destination Protocol Length Info
r 160. 172.30.0.11 172.30.1 Tce 2114 41892 -~ 3030 [PSH, ACK] Seq=1 Ack=1 Win=502 Len=2048
2.000036589 172.30.6.16 172, Teo 66 3030 ~ 41892 [ACK] Seq=1 ACK=2049 Win=542 Len-0 TSval-010456391 TSecr=2916166275
30.000182250 172.30.0.10 172.30.0.11 TP 2114 3030 - 41892 [PSH, ACK] Seq=1 Ack=2049 Win=542 Len=2048 TSval=810486891 TSecr=2916166275
4 0.000207350 172.30.6.11 172.30.0.10 TCP 66 41892 . 3030 [ACK] Seq=2049 Ac)49 Win=534 Len=0 TSval=2916166275 TSecr=810486891
6 0.040668060 172.30.0.11 TCP 66 41892 - 3030 [ACK] Seq=2649 Ack=2050 Win=534 Len=0 TSval-2916166316 TSecr=810486891
75.411740922 7e b9 ARP 42 who has 172.30.0.10? Tell 172.30.0.11
8 6.435656263 ARP 42 who has 172.30.0.107 Tell 172.30.0.11
9 7.459591976 ™ 42.uho has 172.30.0.107 Tell 172.30.6.11
» Frame 1: Packet, 2114 bytes on wire (16912 bits), 2114 bytes captured (16912 bits) on interface €2 96 94 30 1f ©3 7e c5 b9 69 04 6¢c 08 00 45 00 0 -~ -i-1 &
» Ethernet II, Src: Il :6c), Dst: €2:96:94:30:1f:03 196:94:30:1f: ©8 34 93 95 40 00 40 06 46 dd ac 1e 60 6b ac le 400 F
» Internet Protocol Version 4, Src: 172.30.6.11, Dst: 172.30.0.10 00 6a a3 ad 6b d6 3e 88 ©Od 32 d6 55 da 8a 80 18 > 2.0
» Transmission Control Protocol, Src Port: 41892, Dst Port: 3030, Seq: 1, Ack: 1, Len: 2048 01 f6 60 78 00 00 01 01 08 6a ad d1 2a 83 30 4e x oN
, Data (2648 bytes) a9 ea 5a 68 65 79 75 61 6e 20 57 75 3a 20 48 69 Zheyua n Wu: Hi
2c 20 74 68 69 73 20 69 73 20 63 6c 69 65 6e 74 , this i s client
©a 00 40 dc 7d a6 fe 7f ©0 00 48 7a 7f f7 c3 72 e Hz r
70 00 00 06 00 60 00 00 60 00 00 10 7c 2e f7 c3 72 I.
90 60 61 66 06 06 00 00 00 00 0 00 66 60 60 00
00 00 61 00 60 00 00 60 60 00 30 d1 7e f7 c3 72 0~ -r
©0 00 b8 db 7d a6 fe 7f ©0 00 cO db 7d a6 fe 7f ¥
90 00 b8 44 7e f7 c3 72 G0 00 G0 00 60 6O 06 00 e
90 00 bo da 7d a6 fe 7f 00 00 30 db 7d a6 fe 7 7 e
06 60 50 dc 7d a6 fe 7f 00 00 O1 60 60 60 00 0O P}
00 00 e 22 82 f7 c3 72 00 00 ff ff ff ff 60 00 .. r
00 00 do e7 7e f7 c3 72 ©0 00 dO 1a 82 f7 c3 72 ~-r r
00 00 00 00 00 00 07 60 00 00 ed 22 82 f7 c3 72 " r
00 60 60 66 06 06 00 00 06 00 00 60 66 66 60 06
‘ 0 120 ©0 00 60 00 00 00 060 @0 00 60 30 di 7e f7 c3 72 0.~ .r ~
© 7 br-43fa12153f6e: <live capture in progress> Packets: 9 Profile: Default

