Files
CSE5100H2/hw2/model.py
Zheyuan Wu e74aac95e3 updates
2025-10-14 20:34:47 -05:00

107 lines
4.0 KiB
Python

from hydra.utils import instantiate
import torch
import torch.nn as nn
# additional imports for extra credit
import math
import torch.nn.functional as F
class QNetwork(nn.Module):
def __init__(self, state_size, action_size, hidden_size, activation):
super(QNetwork, self).__init__()
self.q_head = nn.Sequential(
nn.Linear(state_size, hidden_size),
instantiate(activation),
nn.Linear(hidden_size, hidden_size),
instantiate(activation),
nn.Linear(hidden_size, action_size)
)
def forward(self, state):
Qs = self.q_head(state)
return Qs
class DuelingQNetwork(nn.Module):
def __init__(self, state_size, action_size, hidden_size, activation):
super(DuelingQNetwork, self).__init__()
self.feature_layer = nn.Sequential(
nn.Linear(state_size, hidden_size),
instantiate(activation),
)
self.value_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
instantiate(activation),
nn.Linear(hidden_size, 1)
)
self.advantage_head = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
instantiate(activation),
nn.Linear(hidden_size, action_size)
)
def forward(self, state):
"""
Get the Q value of the current state and action using dueling network
"""
############################
# YOUR IMPLEMENTATION HERE #
# using equation (7) on https://arxiv.org/pdf/1511.06581
Qs=self.value_head(self.feature_layer(state))+self.advantage_head(self.feature_layer(state))
############################
return Qs
# Extra credit: implementing Noisy DQN
class NoisyLinear(nn.Linear):
# code reference from:
# (1) https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On/blob/baa9d013596ea8ea8ed6826b9de6679d98b897ca/Chapter07/lib/dqn_model.py#L9
# (2) https://github.com/thomashirtz/noisy-networks/blob/main/noisynetworks.py
def __init__(self, in_features, out_features, sigma_init=0.5, bias=True):
super().__init__(in_features, out_features, bias=bias)
# assume noise is gaussian, set sigma as learnable parameters
self.sigma_weight = nn.Parameter(torch.full((out_features, in_features), sigma_init))
self.register_buffer('epsilon_weight', torch.full((out_features, in_features), sigma_init))
if bias:
self.sigma_bias = nn.Parameter(torch.full((out_features,), sigma_init))
self.register_buffer('epsilon_bias', torch.full((out_features,), sigma_init))
self.reset_parameters()
def reset_parameters(self):
"""
Reset the weights and bias of the noisy linear layer to a uniform distribution with std dev of sqrt(3 / in_features)
"""
std = math.sqrt(3 / self.in_features)
self.weight.data.uniform_(-std, std)
self.bias.data.uniform_(-std, std)
def forward(self, input):
"""
Forward pass of noisy linear layer, adding gaussian noise to the weight and bias
"""
self.epsilon_weight.normal_()
weight = self.weight + self.sigma_weight * self.epsilon_weight.data
bias = self.bias
if bias is not None:
self.epsilon_bias.normal_()
bias = bias + self.sigma_bias * self.epsilon_bias.data
return F.linear(input, weight, bias)
class NoisyQNetwork(nn.Module):
def __init__(self, state_size, action_size, hidden_size, activation, sigma_init=0.5):
super(NoisyQNetwork, self).__init__()
self.q_head = nn.Sequential(
NoisyLinear(state_size, hidden_size, sigma_init=sigma_init),
instantiate(activation),
NoisyLinear(hidden_size, hidden_size, sigma_init=sigma_init),
instantiate(activation),
NoisyLinear(hidden_size, action_size, sigma_init=sigma_init)
)
def forward(self, state):
Qs = self.q_head(state)
return Qs