partial update for section 1
This commit is contained in:
71
plot_result.py
Normal file
71
plot_result.py
Normal file
@@ -0,0 +1,71 @@
|
||||
# read tensorboard logs to dataframe
|
||||
|
||||
# based on https://stackoverflow.com/a/52095336
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from collections import defaultdict
|
||||
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
|
||||
|
||||
def tabulate_events(dpath):
|
||||
# parse single experiment
|
||||
experiment_dirs = os.listdir(dpath)
|
||||
summary_iterators = [EventAccumulator(os.path.join(dpath, dname)).Reload() for dname in experiment_dirs]
|
||||
df_tables = []
|
||||
for i,event_iterator in enumerate(summary_iterators):
|
||||
tags = event_iterator.Tags()['scalars']
|
||||
|
||||
for it in summary_iterators:
|
||||
assert it.Tags()['scalars'] == tags
|
||||
|
||||
out = defaultdict(list)
|
||||
steps = []
|
||||
|
||||
for tag in tags:
|
||||
if tag== 'Initial_DataCollection_AverageReturn':
|
||||
continue
|
||||
steps = [e.step for e in event_iterator.Scalars(tag)]
|
||||
|
||||
for e in event_iterator.Scalars(tag):
|
||||
# print(e.step, e.value)
|
||||
out[tag].append(e.value)
|
||||
|
||||
# debug
|
||||
# for key, value in out.items():
|
||||
# print(f"{key}: {len(value)}")
|
||||
|
||||
# ignore the useless key
|
||||
|
||||
df = pd.DataFrame(out)
|
||||
df_tables.append((experiment_dirs[i], df.copy()))
|
||||
return df_tables
|
||||
|
||||
if __name__ == '__main__':
|
||||
# In the first graph, compare the learning curves (average return vs. number of environment steps) for the experiments running with batch size of 1000.
|
||||
root_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'hw3', 'data','p1311')
|
||||
df_tables = tabulate_events(root_dir)
|
||||
for experiment_dir, df in df_tables:
|
||||
# debug
|
||||
print(f"{experiment_dir}:\n {df}")
|
||||
plt.plot(df['Train_EnvstepsSoFar'], df['Train_AverageReturn'], label=experiment_dir)
|
||||
plt.legend()
|
||||
plt.xlabel('Number of Environment Steps')
|
||||
plt.ylabel('Average Return')
|
||||
plt.title('Learning Curves for Batch Size of 1000')
|
||||
plt.show()
|
||||
# – In the second graph, compare the learning curves for the experiments running with
|
||||
# batch size of 4000. (The large batch experiments.)
|
||||
root_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'hw3', 'data','p1312')
|
||||
df_tables = tabulate_events(root_dir)
|
||||
for experiment_dir, df in df_tables:
|
||||
# debug
|
||||
print(f"{experiment_dir}:\n {df}")
|
||||
plt.plot(df['Train_EnvstepsSoFar'], df['Train_AverageReturn'], label=experiment_dir)
|
||||
plt.legend()
|
||||
plt.xlabel('Number of Environment Steps')
|
||||
plt.ylabel('Average Return')
|
||||
plt.title('Learning Curves for Batch Size of 4000')
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user