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Abstract

A quantum error-correcting code is defined to be a unitary mapping (encoding) of k
qubits (two-state quantum systems) into a subspace of the quantum state space of n qubits
such that if any ¢ of the qubits undergo arbitrary decoherence, not necessarily independently,
the resulting n qubit state can be used to faithfully reconstruct the original quantum state
of the k encoded qubits.

For this project, I will build a self-contained report for Steane’s code [3] that is read-
able for undergraduates who have just taken some coding and information theory classes,
assuming no knowledge of quantum computing and quantum information theory.

1 Problem setting and motivation

We will use the notation defined in class and [n] = {1,...,n — 1,n}, (yes, we use 1l-indexed in
computer science), each in natural numbers. And I, is the finite field with ¢ elements.

This notation system is annoying since in mathematics, A* is the transpose of A, but since
we are using literature in physics, we keep the notation of A* to denote the transpose of an
element. (A could be a complex number, or a complex matrix. In mathematics we use A to
denote the transpose) In this report, I will try to make the notation as consistent as possible
and follow the physics convention in this report. So every vector you see will be in |¢) form.
And we will avoid using the (v, w) notation for inner product, as it is used in math, we will use
(v|w) or (v, w) to denote the inner product.

Asymptotic rate k/n = 1 — 2H(2t/n), where Hj is the binary entropy function

Hy = —plogy(p) — (1 — p) logy(1 — p)

1.1 Linear algebra 102

First, we will introduce some notations in linear algebra [1] that we will use in quantum infor-
mation theory and quantum computing.

The main vector space we are interested in is C"; therefore, all the linear operators we
defined are from C" to C".

We denote a vector in vector space as |¢) = (21, ..., z,) (might also be infinite dimensional,
and z; € C).

A natural inner product space defined on C” is given by the Hermitian inner product:

n
Wle) =Dz
i=1
This satisfies the following properties:

L (Y2 Aile) = D>, Ai{¥]e) (linear on the second argument. Note that in physics [4] we
use linear on the second argument and conjugate linear on the first argument. But in



math, we use linear on the first argument and conjugate linear on the second argument
[1]. As promised in the beginning, we will use the physics convention in this report.)

2. {plv) = ((¢]e))"
3. (¢|yp) > 0 with equality if and only if |¢)) =0

Here ) is just a label for the vector, and you don’t need to worry about it too much. This
is also called the ket, where the counterpart:

e (1) is called the bra, used to denote the vector dual to 1; such an element is a linear
functional if you really want to know what that is.

e (1|p) is the inner product between two vectors, and (1| A |p) is the inner product between
Alp) and (1], or equivalently AT ()| and |¢).

e Given a complex matrix A = C™"*",

1. A* is the complex conjugate of A. i.e.,

1+i 244 3+i 1—i 2—i 3—3i
A= |44+i 54+i 6+i| ,A*=|4—i 5—i 6—i
T+i 844 9+i T—i 8—i 9—i

2. AT denotes the transpose of A. i.e.,

1+i 244 3+ 1+i 444 7T+
A= |44i 54i 64+i| , AT =|2+i 5+i 8+
T+i 8+i 9414 3449 6+i 944

3. AT = (A*)T denotes the complex conjugate transpose, referred to as the adjoint, or
Hermitian conjugate of A. i.e.,

1+i 240 3+ 1—i 4—i 7—i
A= |4+i 544 6+i| , AT=|2—i 5—4¢ 8—i
T+i 8+i 9+i 3—i 6—i 9—1i

4. Ais unitary if ATA = AAT =1T.

5. A is hermitian (self-adjoint in mathematics literature) if AT = A.

1.1.1 Motivation of Tensor product

Recall from the traditional notation of product space of two vector spaces V and W, that is,
V x W, is the set of all ordered pairs (|v), |w)) where |v) € V and |w) € W.

The space has dimension dim V' + dim W.

We want to define a vector space with the notation of multiplication of two vectors from
different vector spaces.

That is

(lor) + [v2)) @ [w) = (1) ® |w)) + (Jv2) @ w))
[0) @ (lwi) + |wz)) = (Jv) ® |w1)) + (|Jv) @ |ws))

and enables scalar multiplication by

Alv) @ [w)) = (M) @ [w) = [v) @ (A]w))

And we wish to build a way to associate the basis of V and W with the basis of V @ W.
That makes the tensor product a vector space with dimension dim V' x dim W.



Definition 1. Definition of linear functional
A linear functional is a linear map from V to F.

Note the difference between a linear functional and a linear map.
A generalized linear map is a function f : V — W satisfying the condition.

o f(lw) +1v)) = F(lw) + f(|v))
o f(Av)) = Af(lv))

Definition 2. A bilinear functional is a bilinear function 8 : VxW — F satisfying the condition
that |v) — B(|v),|w)) is a linear functional for all |w) € W and |lw) — B(|v),|w)) is a linear
functional for all |v) € V.

The vector space of all bilinear functionals is denoted by B(V, W).

Definition 3. Let V,W be two vector spaces.

Let V' and W' be the dual spaces of V and W, respectively, that is V' = {1 : V — F} and
W' ={¢: W — F}, ¢, ¢ are linear functionals.

The tensor product of vectors v € V and w € W s the bilinear functional defined by
V(¢,p) € V! x W' given by the notation

(v@w)(h, §) =P (v)p(w)

The tensor product of two vector spaces V and W is the vector space B(V',W')

Notice that the basis of such vector space is the linear combination of the basis of V' and
W', that is, if {e;} is the basis of V' and {f;} is the basis of W', then {e; ® f;} is the basis of
BV, W").

That is, every element of B(V',W') can be written as a linear combination of the basis.

Since {e;} and {f;} are bases of V' and W', respectively, then we can always find a set of
linear functionals {¢;} and {1;} such that ¢;(e;) = 0i; and Y;(f;) = dij.

Here 0;; = Loifi= ]_ is the Kronecker delta.

0 otherwise

n m
VoW =3 ayei(v)v;(w): ¢ € V', pp; € W
i=1 j=1
Note that Y i, D770 aijdi(v)ih;(w) is a bilinear functional that maps V' x W' to F.
This enables basis-free construction of vector spaces with proper multiplication and scalar
multiplication.
This vector space is equipped with the unique inner product (v ® w,u ® z)ygw defined by

(vRw,u®x) = (v,u)y{w,z)w

In practice, we ignore the subscript of the vector space and just write (v ® w,u ® x) =
(v, u){w, ).

In this report, we will use the following definition for a quantum system. There are many
variations for the definition of Hilbert space (In mathematics, the Hilbert space is the com-
plete inner product space, but here in physics, for most of the time, we ignore the complete
requirement and just use the inner product space).

We use H to denote the Hilbert space. (In mathematics we use )



Definition 4. A two-state quantum system is the Hilbert space H5 over n qubits (finite dimen-
sional) generated by the complex vectors |bg) , |b1) ..., |ban_1) where b; is the representation of
the number ¢ in binary. It is equivalent to 7—[%9" (The tensor product of n two-state quantum
systems Ha).

Each Hs is a representation of a qubit quantum system. /5]

One might ask, what is the fundamental difference between a quantum system and a classical
system, and why can we not directly apply those theorems in classical computers to a quantum
computer? It turns out that quantum error-correcting codes are hard due to the following
definitions and features for quantum computing.

Definition 5. All quantum operations can be constructed by composing four kinds of transfor-
mations: (adapted from Chapter 10 of [9])

1. Unitary operations. U(-) for any quantum state. It is possible to apply a non-unitary
operation for an open quantum system, but that is usually not the focus for quantum
computing and usually leads to non-recoverable loss of information that we wish to obtain.

2. Extend the system. Given a quantum state p € HY, we can extend it to a larger quantum
system by “entangle” (For this report, you don’t need to worry for how quantum entan-
glement works) it with some new states o € HX (The space where the new state dwells is
usually called ancilla system) and get p' = p@ 0 € HY @ K.

3. Partial trace. Given a quantum state p € H and some reference state o € HX, we can
trace out some subsystems and get a new state p' € HNK,

4. Selective measurement. Given a quantum state, we measure it and get a classical bit;
unlike the classical case, the measurement is a probabilistic operation. (More specifically,
this is some projection to a reference state corresponding to a classical bit output. For this
report, you don’t need to worry about how such a result is obtained and how the reference
state is constructed.)

During quantum computing in practice, it is hard to isolate the quantum from the environ-
ment, and the one actually doing computations. This results in decoherence process p — p’
where H is the error from the environment, which leads our system to extend with environment
and ”lose information”, that is, if you make measurement based on initial states but assume no
noise is introduced, the distribution of result will be different than the one expected and it is
impossible to recover if we don’t know what noise is (which holds true for most of the cases).
One intuitive explanation for that is similar to Jenson’s inequality, where some concentration
on getting a certain value is ”dispersed” to extra outcome states where measurement is not
expected.

Generally, the following few operations are mostly used for creating quantum circuits, which
can be found in section 4.2 of [4]

Definition 6. Let |psi) = a|0) + b|1) be a single qubit vector where a,b are complex numbers
satisfying |a|? + |b|? = 1. Operations on a qubit must preserve this norm, and thus are described
by 2 X 2 unitary matrices. The most commonly used are Pauli matrices, listed as follows:

o S B P R

And a few other gates that will be used in this report:

Hadamard gate (H)
1 (1 1
#-gh
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And additional two bit operation |c) |t) — |c) [t © ¢) given as

1 000
0100
CNOT = 000 1

0 010

Measurement will destroy the quantum state, and recovery is impossible.

Theorem 7. No-cloning theorem: There is no way to clone a general quantum state via a
unitary operation.

The proof is adapted from the book [4]

Proof. Suppose we have a quantum system with two slots A and B, the data slot starts out in
an unknown but pure quantum state |¢)). This is the state which is to be copied into slot Bm
the target slot. We assume that the target slot starts in some standard pure state |s). Thus,
the initial state of the copying machine is [¢)) ® |s).

Assume there exists some unitary operator U such that U(|¢) ® |s)) = |¢) ® |¢).

Consider two pure states |¢0) and |¢), such that U(|)) @ |s)) = |¢) @ |[¢) and U(|p) ® |s)) =
lp) ® |p). The inner product of the two equation yields:

(Wle) = (Yle))?

This equation has only two solutions, either (i)|¢) = 0 or (|p) = 1.
If (¢|¢) = 0, then |¢) = |¢), no cloning for trivial case.
If (|p) = 1, then [¢) and |p) are orthogonal, which does not hold for general quantum

states.
O]

1.2 Theoretical upper bound for quantum error-correcting code

From the quantum information capacity of a quantum channel, we can deduce the upper bound
for a quantum error-correcting code. Due to time constraints, we use this as a lemma, and the
reader can check the relevant literature for proofs.

min{1 — Hs(2t/3n), Hg(% + /(1 =t/n)t/n)}

1.3 Quantum error-correcting code from binary linear error-correcting code

Recall from classical linear error-correcting codes, we have a code (n, k, £) with n qubits, k data
qubits, and ¢ error-correcting qubits.

All the operations will be done in Fy = {0,1}.

Consider two binary vectors v = [vy,...,v,],v; € {0,1} and w = [wy,...,w,],w; € {0,1}
with size n.

Recall from our lecture that.

d denotes the Hamming weight of a vector.

dg(v,w) =31, 0 ?f Vi =W enotes the Hamming distance between v and w.
1 if V; 75 Ww;

supp(v) = {i € [n] : v; # 0} denotes the support of v.

v|s denotes the projection of v onto the subspace S, we usually denote the S by a set of
coordinates, that is S C [n].

When projecting a vector v onto a another vector w, we usually write v|g = v|supp w-

When we have two vectors, we may use v < w (Note that this is different from the < sign)
to mean supp(v) C supp(w).



Example 2. Let v = [1,0,0,1,1,1,1] and w = [1,0,0,1,0,0, 1], then supp(v) = {1,4,5,6,7},
supp(w) = {1,4,7}. Therefore w < v.
]y = [v1,v4,v7] = [1,1,0]

C denotes the code, a set of arbitrary binary vectors with length n.

d(C) = {d(v,w)|v,w € C} denotes the minimum distance of the code.

If C is linear, then the minimum distance is the minimum Hamming weight of a non-zero
codeword.

A [n, k, d] linear code is a linear code of n bits codeword with & message bits that can correct
d errors.

R = % is the rate of code C.
Ct={veFy:v-w=0 forall w € C} is the dual code of a code C. From linear algebra,

we know that dimCt + dimC = n.

Example 3. Consider the [7,4,3] Hamming code with generator matriz G.

11
10
G = 11
1

O O ==
O ===
— O = =
O = O
_ o O =

1
All the codewords for the [7,4,3] Hamming code are

0000000 0001011 0010110 0011101
_ 0100111 0101100 0110001 0111010
~ 1000101 1001110 1010011 1011000

1100010 1101001 1110100 1111111

C

Common error defined in the quantum information theory involves bit flips and phase flips,
introduced in Section 8.3.3 of [4].

Definition 8. The bit-flip channel flips the state of a qubit from |0) to |1) with probability 1—p,
the operation element is defined as follows. Let |0),|1) be the basis of matrices for F2*2.

P T

Definition 9. The phase-flip channel flips the state of a qubit with probability 1—p; the operation
element is defined as follows. Let |0),|1) be the basis of matrices for F2*2.

10 1 0
EOZ\/I?I:\/I)[O 1:|, E1: 1—pZ:\/1—p|:0 _1:|
Generally, the error channel might be more general (Amplitude damping, Depolarizing chan-

nel) than that, but to simplify our discussion, we only consider bit-flip and phase-flip channels
as our main source of noise.

4 Tools and related topics

Next, we will introduce some tools for quantum error correction.



4.1 Shor code

First, we will introduce a coding scheme analogous to repetition code in our class, but in
quantum computing. The Shor code [5]

Proposition 10. Assume that the decoherence process only affects one qubit of our superposi-
tion, while the other qubits remain unchanged.

There exists a quantum coding scheme that encodes 8 to 9 bits that corrects 1 error. [9,1, 3]
code exists.

Recover 1 qubit from a 9-qubit quantum system.

First we define the decoherence process introduced in [5]. That is, the basis bit |eg) |1) —
lag) [0) |a1) |1) and |eg) |0) +— |a2) |0) |az) |1). Where |ag),|a1), |a2) ,|as) are states of the envi-
ronment. We use E(|¢)) to represent the decoherence process.

The encoding process for the Shor code goes as follows:

1) — [1z) = L(]000> +(111))(]000) + [111))(]000) + [111))
2v/2
1
22

The decoding process is slightly different from the classical cases. Recall that in the clas-
sical cases, we can directly use the measurement to determine the error position. In quantum
computing, we can make a measurement on the extra 8 bits to determine if |¢/) has an error or
not, but it may not help us restore the correct bit |1)) since measurement is not recoverable.

We need to restore the target state [¢) using the information from the measurement.

Suppose, without loss of generality, the decoherence process affects encoded |0), then we
have the following superposition to decode:

0) = 102) = 5—(/000) — [111))(|000) — [111))(|000) — [111))

E(loz)) = \2 [(lao) [0) + |ax) [1)) [00) + (Ja2) |0) +[az) 1)) [11)]

In terms of Bell basis |¢1) = ﬁ(yoom 4 [111)) and |¢~) = ﬁ(mom — |111)), we have the
following;:

E(0)) = 2\1/§(|a0> + [as))(|000) + [111))

+ 2;§<|a0> — [a3))(]000) — [111))

+ 2j§<|a1> + [a2))(1100) + [011))

" 2j§<|a1> ~ a2))(|100) — [011))

and |1) will have

E(1)) = 2\1/§(|a0> + [as))(|000) — [111))
1

PN

T 2j§<|a1> + Ja2))(|100) — [011))

1
+ Tﬁ(laﬁ — |a2))(|100) + |011))

(lao) — la3))(|000) + [111))



Suppose [¢)) = a|0) + B |1L), then the error with the encoding can be written as a super-
position of four terms:

[V), X1 [¥), Z1 [¥) , X121 |¢)

Measuring the error syndrome collapse the superposition into a single term, (This has to do
with the fact that these states are orthogonal therefore perfectly distinguishable, the detailed
proof worth another section but the intuition is that projection for the orthogonal states, or
called measurement, is either 0 or 1, corresponding to the probability of measuring the outcome
with 1 or 0 if otherwise) which tells us the error operation £ and how to recover them by inverse
operation for I, Xy, Zy, X1 7.

The whole process can be done using the quantum circuits described below:

) [ H | e H] P— )
10) <> &

10) o I

0) — (H] ¢ H b

0) S2 E &

10) & &

10) & H | o H| @

10) <5 &

10) b o

Figure 1: Encoding and decoding process for the Shor code using controlled-NOT gates and
Hadamard gates.

4.2 CSS code (Steane code)

This is a quantum error-correction code actually introduced in our selection [3]. A special
instance of that is Steane’s code. It’s basically the quantum version of the classical Hamming
code.

Proposition 11. Let C1,Cy are [n, k1], [n, k| classic linear code such that Co C C1 and Cy and

Cy both correct t errors. The CSS code [n, ki — ko] quantum code correcting t qubits, namely

the CSS code of C1 over Cq is a quantum error-correcting code by the following construction.
Let x € Cy be any codeword of C1. The encoding for |x) — |z + Ca) is the following:

|z +Co) = TG > e +y)
‘ 2 y€Ca
The quantum code C'SS(Cy,Cq) is the span of the states |x + Cq) for all x € Cq, which is a
[n, k1 — ko] quantum code.

Suppose 2’ is an element of C; such that x — 2’ € Co, by linearity of linear code, |z + C3) =
|z’ 4 Ca), thus the state |z + C2) depends only upon the coset of C;/Ca.

If 2, 2’ belongs to different coset of Csy, then for no y,y’ € Co such that z +y =2’ +3/.

This shows that |z + Cq) and |2/ + Ca) are orthogonal states.

We want to show that the quantum code C'SS(C1,Cs) is a quantum error-correcting code
that is capable of correcting ¢ bit and phase flip errors. Therefore, decoding of the CSS code is
valid and possible. The proof is adapted from [4] Section 10.4.2



Proof. Suppose the bit flip errors are described by an n bit vector e; with 1s where bit flips
occurred, and Os represent the bit remains the same. ey be the n bit vector where 1s where
phase flips occurred and Os represents the phase remains the same.

Let |x + C3) be the original state, then the corrupted state is:

Z )z 4yt er)

v | 2 yeCa

The term (—1)#+¥)¢2 generalized the phase error and |x +y + e1) gives the bit flip errors.

First, we detect and remove bit flip errors.

We initialized the ancilla system by taking tensor products of |z + y + e;) with the zero
states, then we have |z + y + e1) |0). By applying reversible parity check matrix H; of code Cy,
|z + vy + e1)|0) becomes |z +y+e1) |Hi(z+y+er)) =|z+y+er)|Her).

Since (z + y) € C1, the operation will map the state

S (=1)ETE |z 4y 46y ST (1)@t g 4yt er) | Her)

1 1
%
VICe| yeCa VICol yeCs

Then we take the measurement operator on the ancilla and decode the linear code C; to
obtain the e; since C; can correct up to t errors.

2 (DIt y e |He) >~ 3L ()T ety )

1
V ‘62’ y€eCo \% ‘ 2 yeCa

By applying the NOT gate on the error bits detected, we have

Z(_l)(x+y)~62 1z +y+er) Z YEt)ea g gy

1
V1| yeCs V ‘CQ yeCs

Second, we detect and remove phase flip errors.
We first detect phase flip errors by applying Hadamard gates to each qubit.

(:0+y ea+2) ]z>

1 T+y)-e2
7 2 T ) = \/|C|nZZ

y€eCa ZGF" y€Ca

Let 2/ = 2z + es, then the state can be rewritten as

)TV |2 4 eg)

T 2 Z s e B S

2€Fy yeCa 2 €Fy yeCa

/

Suppose 2’ € C2 , then Zyec (=1)¥% =|Cq|, and if 2’ ¢ Cj, then ZyGCQ( 1)¥* =0
Therefore, we can rewrite the state as

:Ez’ ’Z/+62>

x—l— )z
T I L e e B

2€F? y€Co 2'€Cy

Note that the form is exactly the same as the bit flip cases. Therefore, we can correct it
using the same procedure and obtain the following with error es.

JIZ |Z

xz’ |Z/—|—€
\/\czr 2 Zc ? \/\c 2 Zc:

Apply the Hadamard gate to the bits to the states where es = 0, since V|¢) , H? [¢) = |}).



1™ |) 2 +)
\/\c 2 ZC \/rcz ZC

Which restores the desired state.
O

Example 5. Let C1 be the [7,4,3] Hamming code and Cy be Ci-, then the Steane code is the
CSS code of C1 over C,.

This code contains 2" K172 orthogonal states, in this case, ki = 4 and ko = 3. Therefore,
our quantum error correcting code will map 4 — 3 =1 qubits into 7 qubits.

> o) |0000000> 11010101) + [0110011) 4 |1100110)
\fUEH

+ \0001111> +[1011010) + |0111100) + |1101001) ]

1) > Ju+e) ! [|1111111) + [0101010) + |1001100) + [0011001)
2[ PG

veEHe
+[1110000) + [0100101) + [1000011) + |0010110) ]

Where e is the all-1 vector.

6 Evaluation of paper

This paper provides a natural mapping of traditional linear codes to the quantum error correc-
tion code, which inspires future research and applications on more complicated quantum error
correction algorithms like stabilizer codes and surface code.

7 Limitation and suggestions

These codes generally deal with the case where the decoherence process only affects one qubit
of our superposition, while the other qubits remain unchanged.

However, generally, the error in quantum computing is continuous, and it is hard to distin-
guish the error via a discrete measurement.

An interesting topic is to evaluate the bounds of the correctable error beyond bit and phase
flip for CSS code and show the limit of the method in terms of Bloch sphere transformation for
the multi-qubit system.

8 Further direction and research

By the distinct properties of quantum computation and information theory derived from the
setting, there are many interesting applications and ways to correct errors by using entanglement
and measurement operations.

Some interesting topics are the Toric code and the surface code.

This method gives a [2nm +n + m + 1,1, min(n, m)] error correcting code that only needs
local stabilizer checks and really interests me. I want to know more about this code and how it
works, if time permits, and these questions will stay in my mind when I have a good chance to
work on it.
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