This commit is contained in:
Zheyuan Wu
2026-01-19 20:59:04 -06:00
parent b072a4459e
commit 04c1b6bf71
16 changed files with 1134 additions and 0 deletions

45
chapters/chap3.tex Normal file
View File

@@ -0,0 +1,45 @@
% chapters/chap2.tex
\documentclass[../main.tex]{subfiles}
\ifSubfilesClassLoaded{
\addbibresource{chap3.bib}
}
\begin{document}
\chapter{Seigel-Bargmann Space}
In this chapter, we will collect ideas and other perspective we have understanding the concentration of measure phenomenon. Especially with symmetric product of $\C P^1$ and see how it relates to Riemman surfaces and Seigel-Bargmann spaces.
\begin{figure}[h]
\centering
\begin{tikzpicture}[node distance=40mm, thick,
main/.style={draw, draw=white},
towards/.style={->},
towards_imp/.style={<->,red},
mutual/.style={<->}
]
\node[main] (cp) {$\mathbb{C}P^{n}$};
\node[main] (c) [below of=cp] {$\mathbb{C}^{n+1}$};
\node[main] (p) [right of=cp] {$\mathbb{P}^n$};
\node[main] (sym) [below of=p] {$\operatorname{Sym}_n(\mathbb{C}P^1)$};
% draw edges
\draw[towards] (c) -- (cp) node[midway, left] {$z\sim \lambda z$};
\draw[towards] (c) -- (p) node[midway, fill=white] {$w(z)=\sum_{i=0}^n Z_i z^i$};
\draw[towards_imp] (cp) -- (p) node[midway, above] {$w(z)\sim w(\lambda z)$};
\draw[mutual] (p) -- (sym) node[midway, right] {root of $w(z)$};
\end{tikzpicture}
\caption{Majorana stellar representation}
\label{fig:majorana_stellar_representation}
\end{figure}
Basically, there is a bijection between the complex projective space $\mathbb{C}P^n$ and the set of roots of a polynomial of degree $n$.
We can use a symmetric group of permutations of $n$ complex numbers (or $S^2$) to represent the $\mathbb{C}P^n$, that is, $\mathbb{C}P^n=S^2\times S^2\times \cdots \times S^2/S_n$.
One might be interested in the random sampling over the $\operatorname{Sym}_n(\mathbb{C}P^1)$ and the concentration of measure phenomenon on that.
\ifSubfilesClassLoaded{
\printbibliography[title={References for Chapter 2}]
}
\end{document}