optimize entropy

This commit is contained in:
Trance-0
2026-02-01 13:41:12 -06:00
parent c18f798c16
commit 20f486cccb
16 changed files with 696 additions and 712 deletions

Binary file not shown.

View File

@@ -0,0 +1,48 @@
"""
plot the probability of the entropy of the reduced density matrix of the pure state being greater than log2(d_A) - alpha - beta
for different alpha values
IGNORE THE CONSTANT C
NOTE there is bug in the program, You should fix it if you want to use the visualization, it relates to the alpha range and you should not plot the prob of 0
"""
import numpy as np
import matplotlib.pyplot as plt
from quantum_states import sample_and_calculate
from tqdm import tqdm
# Set dimensions
db = 16
da_values = [8, 16, 32]
alpha_range = np.linspace(0, 2, 100) # Range of alpha values to plot
n_samples = 100000
plt.figure(figsize=(10, 6))
for da in tqdm(da_values, desc="Processing d_A values"):
# Calculate beta according to the formula
beta = da / (np.log(2) * db)
# Calculate probability for each alpha
predicted_probabilities = []
actual_probabilities = []
for alpha in tqdm(alpha_range, desc=f"Calculating probabilities for d_A={da}", leave=False):
# Calculate probability according to the formula
# Ignoring constant C as requested
prob = np.exp(-(da * db - 1) * alpha**2 / (np.log2(da))**2)
predicted_probabilities.append(prob)
# Calculate actual probability
entropies = sample_and_calculate(da, db, n_samples=n_samples)
actual_probabilities.append(np.sum(entropies > np.log2(da) - alpha - beta) / n_samples)
# plt.plot(alpha_range, predicted_probabilities, label=f'$d_A={da}$', linestyle='--')
plt.plot(alpha_range, actual_probabilities, label=f'$d_A={da}$', linestyle='-')
plt.xlabel(r'$\alpha$')
plt.ylabel('Probability')
plt.title(r'$\operatorname{Pr}[H(\psi_A) <\log_2(d_A)-\alpha-\beta]$ vs $\alpha$ for different $d_A$')
plt.legend()
plt.grid(True)
plt.yscale('log') # Use log scale for better visualization
plt.show()

View File

@@ -0,0 +1,52 @@
"""
plot the probability of the entropy of the reduced density matrix of the pure state being greater than log2(d_A) - alpha - beta
for different d_A values, with fixed alpha and d_B Note, d_B>d_A
"""
import numpy as np
import matplotlib.pyplot as plt
from quantum_states import sample_and_calculate
from tqdm import tqdm
# Set dimensions
db = 32
alpha = 0
da_range = np.arange(2, 10, 1) # Range of d_A values to plot
n_samples = 1000000
plt.figure(figsize=(10, 6))
predicted_probabilities = []
actual_probabilities = []
for da in tqdm(da_range, desc="Processing d_A values"):
# Calculate beta according to the formula
beta = da / (np.log(2) * db)
# Calculate probability according to the formula
# Ignoring constant C as requested
prob = np.exp(-((da * db - 1) * alpha**2 / (np.log2(da)**2)))
predicted_probabilities.append(prob)
# Calculate actual probability
entropies = sample_and_calculate(da, db, n_samples=n_samples)
count = np.sum(entropies < np.log2(da) - alpha - beta)
# early stop if count is 0
if count != 0:
actual_probabilities.append(count / n_samples)
else:
actual_probabilities.extend([np.nan] * (len(da_range) - len(actual_probabilities)))
break
# debug
print(f'da={da}, theoretical_prob={prob}, threshold={np.log2(da) - alpha - beta}, actual_prob={actual_probabilities[-1]}, entropy_heads={entropies[:10]}')
# plt.plot(da_range, predicted_probabilities, label=f'$d_A={da}$', linestyle='--')
plt.plot(da_range, actual_probabilities, label=f'$d_A={da}$', linestyle='-')
plt.xlabel(r'$d_A$')
plt.ylabel('Probability')
plt.title(r'$\operatorname{Pr}[H(\psi_A) < \log_2(d_A)-\alpha-\beta]$ vs $d_A$ for fixed $\alpha=$'+str(alpha)+r' and $d_B=$' +str(db)+ r' with $n=$' +str(n_samples))
# plt.legend()
plt.grid(True)
plt.yscale('log') # Use log scale for better visualization
plt.show()

View File

@@ -0,0 +1,55 @@
import numpy as np
import matplotlib.pyplot as plt
from quantum_states import sample_and_calculate
from tqdm import tqdm
# Set dimensions, keep db\geq da\geq 3
db = 64
da_values = [4, 8, 16, 32]
da_colors = ['b', 'g', 'r', 'c']
n_samples = 100000
plt.figure(figsize=(10, 6))
# Define range of deviations to test (in bits)
deviations = np.linspace(0, 1, 50) # Test deviations from 0 to 1 bits
for i, da in enumerate(tqdm(da_values, desc="Processing d_A values")):
# Calculate maximal entropy
max_entropy = np.log2(min(da, db))
# Sample random states and calculate their entropies
entropies = sample_and_calculate(da, db, n_samples=n_samples)
# Calculate probabilities for each deviation
probabilities = []
theoretical_probs = []
for dev in deviations:
# Count states that deviate by more than dev bits from max entropy
count = np.sum(max_entropy - entropies > dev)
# Omit the case where count is 0
if count != 0:
prob = count / len(entropies)
probabilities.append(prob)
else:
probabilities.append(np.nan)
# Calculate theoretical probability using concentration inequality
# note max_entropy - dev = max_entropy - beta - alpha, so alpha = dev - beta
beta = da / (np.log(2)*db)
alpha = dev - beta
theoretical_prob = np.exp(-(da * db - 1) * alpha**2 / (np.log2(da))**2)
# # debug
# print(f"dev: {dev}, beta: {beta}, alpha: {alpha}, theoretical_prob: {theoretical_prob}")
theoretical_probs.append(theoretical_prob)
plt.plot(deviations, probabilities, '-', label=f'$d_A={da}$ (simulated)', color=da_colors[i])
plt.plot(deviations, theoretical_probs, '--', label=f'$d_A={da}$ (theoretical)', color=da_colors[i])
plt.xlabel('Deviation from maximal entropy (bits)')
plt.ylabel('Probability')
plt.title(f'Probability of deviation from maximal entropy simulation with sample size {n_samples} for $d_B={db}$ ignoring the constant $C$')
plt.legend()
plt.grid(True)
plt.yscale('log') # Use log scale for better visualization
plt.show()

View File

@@ -0,0 +1,33 @@
import numpy as np
import matplotlib.pyplot as plt
from quantum_states import sample_and_calculate
from tqdm import tqdm
# Define range of dimensions to test
fixed_dim = 64
dimensions = np.arange(2, 64, 2) # Test dimensions from 2 to 50 in steps of 2
expected_entropies = []
theoretical_entropies = []
predicted_entropies = []
# Calculate entropies for each dimension
for dim in tqdm(dimensions, desc="Calculating entropies"):
# For each dimension, we'll keep one subsystem fixed at dim=2
# and vary the other dimension
entropies = sample_and_calculate(dim, fixed_dim, n_samples=1000)
expected_entropies.append(np.mean(entropies))
theoretical_entropies.append(np.log2(min(dim, fixed_dim)))
beta = min(dim, fixed_dim)/(2*np.log(2)*max(dim, fixed_dim))
predicted_entropies.append(np.log2(min(dim, fixed_dim)) - beta)
# Create the plot
plt.figure(figsize=(10, 6))
plt.plot(dimensions, expected_entropies, 'b-', label='Expected Entropy')
plt.plot(dimensions, theoretical_entropies, 'r--', label='Theoretical Entropy')
plt.plot(dimensions, predicted_entropies, 'g--', label='Predicted Entropy')
plt.xlabel('Dimension of Subsystem B')
plt.ylabel('von Neumann Entropy (bits)')
plt.title(f'von Neumann Entropy vs. System Dimension, with Dimension of Subsystem A = {fixed_dim}')
plt.legend()
plt.grid(True)
plt.show()

View File

@@ -0,0 +1,51 @@
import numpy as np
import matplotlib.pyplot as plt
from quantum_states import sample_and_calculate
from tqdm import tqdm
from mpl_toolkits.mplot3d import Axes3D
# Define range of dimensions to test
dimensionsA = np.arange(2, 64, 2) # Test dimensions from 2 to 50 in steps of 2
dimensionsB = np.arange(2, 64, 2) # Test dimensions from 2 to 50 in steps of 2
# Create meshgrid for 3D plot
X, Y = np.meshgrid(dimensionsA, dimensionsB)
Z = np.zeros_like(X, dtype=float)
# Calculate entropies for each dimension combination
total_iterations = len(dimensionsA) * len(dimensionsB)
pbar = tqdm(total=total_iterations, desc="Calculating entropies")
for i, dim_a in enumerate(dimensionsA):
for j, dim_b in enumerate(dimensionsB):
entropies = sample_and_calculate(dim_a, dim_b, n_samples=100)
Z[j,i] = np.mean(entropies)
pbar.update(1)
pbar.close()
# Create the 3D plot
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
# Plot the surface
surf = ax.plot_surface(X, Y, Z, cmap='viridis')
# Add labels and title with larger font sizes
ax.set_xlabel('Dimension of Subsystem A', fontsize=12, labelpad=10)
ax.set_ylabel('Dimension of Subsystem B', fontsize=12, labelpad=10)
ax.set_zlabel('von Neumann Entropy (bits)', fontsize=12, labelpad=10)
ax.set_title('von Neumann Entropy vs. System Dimensions', fontsize=14, pad=20)
# Add colorbar
cbar = fig.colorbar(surf, ax=ax, label='Entropy')
cbar.ax.set_ylabel('Entropy', fontsize=12)
# Add tick labels with larger font size
ax.tick_params(axis='x', labelsize=10)
ax.tick_params(axis='y', labelsize=10)
ax.tick_params(axis='z', labelsize=10)
# Rotate the plot for better visibility
ax.view_init(elev=30, azim=45)
plt.show()

96
codes/quantum_states.py Normal file
View File

@@ -0,0 +1,96 @@
import numpy as np
from scipy.linalg import sqrtm
from scipy.stats import unitary_group
from tqdm import tqdm
def random_pure_state(dim_a, dim_b):
"""
Generate a random pure state for a bipartite system.
The random pure state is uniformly distributed by the Haar (Fubini-Study) measure on the unit sphere $S^{dim_a * dim_b - 1}$. (Invariant under the unitary group $U(dim_a) \times U(dim_b)$)
Args:
dim_a (int): Dimension of subsystem A
dim_b (int): Dimension of subsystem B
Returns:
numpy.ndarray: Random pure state vector of shape (dim_a * dim_b,)
"""
# Total dimension of the composite system
dim_total = dim_a * dim_b
# Generate non-zero random complex vector
while True:
state = np.random.normal(size=(dim_total,)) + 1j * np.random.normal(size=(dim_total,))
if np.linalg.norm(state) > 0:
break
# Normalize the state
state = state / np.linalg.norm(state)
return state
def von_neumann_entropy_bipartite_pure_state(state, dim_a, dim_b):
"""
Calculate the von Neumann entropy of the reduced density matrix.
Args:
state (numpy.ndarray): Pure state vector
dim_a (int): Dimension of subsystem A
dim_b (int): Dimension of subsystem B
Returns:
float: Von Neumann entropy
"""
# Reshape state vector to matrix form
state_matrix = state.reshape(dim_a, dim_b)
# Calculate reduced density matrix of subsystem A
rho_a = np.dot(state_matrix, state_matrix.conj().T)
# Calculate eigenvalues
eigenvals = np.linalg.eigvalsh(rho_a)
# Remove very small eigenvalues (numerical errors)
eigenvals = eigenvals[eigenvals > 1e-15]
# Calculate von Neumann entropy
entropy = -np.sum(eigenvals * np.log2(eigenvals))
return np.real(entropy)
def sample_and_calculate(dim_a, dim_b, n_samples=1000):
"""
Sample random pure states (generate random co) and calculate their von Neumann entropy.
Args:
dim_a (int): Dimension of subsystem A
dim_b (int): Dimension of subsystem B
n_samples (int): Number of samples to generate
Returns:
numpy.ndarray: Array of entropy values
"""
entropies = np.zeros(n_samples)
for i in tqdm(range(n_samples), desc=f"Sampling states (d_A={dim_a}, d_B={dim_b})", leave=False):
state = random_pure_state(dim_a, dim_b)
entropies[i] = von_neumann_entropy_bipartite_pure_state(state, dim_a, dim_b)
return entropies
# Example usage:
if __name__ == "__main__":
# Example: 2-qubit system
dim_a, dim_b = 50,100
# Generate single random state and calculate entropy
state = random_pure_state(dim_a, dim_b)
entropy = von_neumann_entropy_bipartite_pure_state(state, dim_a, dim_b)
print(f"Single state entropy: {entropy}")
# Sample multiple states
entropies = sample_and_calculate(dim_a, dim_b, n_samples=1000)
print(f"Expected entropy: {np.mean(entropies)}")
print(f"Theoretical entropy: {np.log2(max(dim_a, dim_b))}")
print(f"Standard deviation: {np.std(entropies)}")

32
codes/test.py Normal file
View File

@@ -0,0 +1,32 @@
# unit test for the functions in quantum_states.py
import unittest
import numpy as np
from quantum_states import random_pure_state, von_neumann_entropy_bipartite_pure_state
class LearningCase(unittest.TestCase):
def test_random_pure_state_shape_and_norm(self):
dim_a = 2
dim_b = 2
state = random_pure_state(dim_a, dim_b)
self.assertEqual(state.shape, (dim_a * dim_b,))
self.assertAlmostEqual(np.linalg.norm(state), 1)
def test_partial_trace_entropy(self):
dim_a = 2
dim_b = 2
state = random_pure_state(dim_a, dim_b)
self.assertAlmostEqual(von_neumann_entropy_bipartite_pure_state(state, dim_a, dim_b), von_neumann_entropy_bipartite_pure_state(state, dim_b, dim_a))
def test_sample_uniformly(self):
# calculate the distribution of the random pure state
dim_a = 2
dim_b = 2
state = random_pure_state(dim_a, dim_b)
def main():
unittest.main()
if __name__ == "__main__":
main()