optimize entropy

This commit is contained in:
Trance-0
2026-02-01 13:41:12 -06:00
parent c18f798c16
commit 20f486cccb
16 changed files with 696 additions and 712 deletions

View File

@@ -0,0 +1,55 @@
import numpy as np
import matplotlib.pyplot as plt
from quantum_states import sample_and_calculate
from tqdm import tqdm
# Set dimensions, keep db\geq da\geq 3
db = 64
da_values = [4, 8, 16, 32]
da_colors = ['b', 'g', 'r', 'c']
n_samples = 100000
plt.figure(figsize=(10, 6))
# Define range of deviations to test (in bits)
deviations = np.linspace(0, 1, 50) # Test deviations from 0 to 1 bits
for i, da in enumerate(tqdm(da_values, desc="Processing d_A values")):
# Calculate maximal entropy
max_entropy = np.log2(min(da, db))
# Sample random states and calculate their entropies
entropies = sample_and_calculate(da, db, n_samples=n_samples)
# Calculate probabilities for each deviation
probabilities = []
theoretical_probs = []
for dev in deviations:
# Count states that deviate by more than dev bits from max entropy
count = np.sum(max_entropy - entropies > dev)
# Omit the case where count is 0
if count != 0:
prob = count / len(entropies)
probabilities.append(prob)
else:
probabilities.append(np.nan)
# Calculate theoretical probability using concentration inequality
# note max_entropy - dev = max_entropy - beta - alpha, so alpha = dev - beta
beta = da / (np.log(2)*db)
alpha = dev - beta
theoretical_prob = np.exp(-(da * db - 1) * alpha**2 / (np.log2(da))**2)
# # debug
# print(f"dev: {dev}, beta: {beta}, alpha: {alpha}, theoretical_prob: {theoretical_prob}")
theoretical_probs.append(theoretical_prob)
plt.plot(deviations, probabilities, '-', label=f'$d_A={da}$ (simulated)', color=da_colors[i])
plt.plot(deviations, theoretical_probs, '--', label=f'$d_A={da}$ (theoretical)', color=da_colors[i])
plt.xlabel('Deviation from maximal entropy (bits)')
plt.ylabel('Probability')
plt.title(f'Probability of deviation from maximal entropy simulation with sample size {n_samples} for $d_B={db}$ ignoring the constant $C$')
plt.legend()
plt.grid(True)
plt.yscale('log') # Use log scale for better visualization
plt.show()