diff --git a/chapters/chap0.pdf b/chapters/chap0.pdf index e34671f..b49317a 100644 Binary files a/chapters/chap0.pdf and b/chapters/chap0.pdf differ diff --git a/chapters/chap0.tex b/chapters/chap0.tex index f948e87..0749e0b 100644 --- a/chapters/chap0.tex +++ b/chapters/chap0.tex @@ -518,9 +518,9 @@ $$ % Gleason's theorem (Theorem 1.1.15 in~\cite{parthasarathy2005mathematical}) % Let $\mathscr{H}$ be a Hilbert space over $\mathbb{C}$ or $\mathbb{R}$ of dimension $n\geq 3$. Let $\mu$ be a state on the space $\mathscr{P}$ of projections on $\mathscr{H}$. Then there exists a unique density operator $\rho$ such that -% \[ +% $$ % \mu(P)=\operatorname{Tr}(\rho P) -% \] +% $$ % for all $P\in\mathscr{P}$. $\mathscr{P}$ is the space of all orthogonal projections on $\mathscr{H}$. % \end{theorem} @@ -532,7 +532,7 @@ $$ % This theorem is a very important theorem in non-commutative probability theory; it states that any state on the space of all orthogonal projections on $\mathscr{H}$ can be represented by a density operator. -The counterpart of the random variable in the non-commutative probability theory is called an observable, which is a Hermitian operator on $\mathscr{H}$ (for all $\psi,\phi$ in the domain of $A$, we have $\langle A\psi,\phi\rangle=\langle\psi,A\phi\rangle$. This kind of operator ensures that our outcome interpreted as probability is a real number). +The counterpart of the random variable in the non-commutative probability theory is called an observable, which is a Hermitian operator on $\mathscr{H}$ (for all $\psi,\phi$ in the domain of $A$, we have $\langle A\psi,\phi\rangle=\langle\psi,A\phi\rangle$. This kind of operator ensures that our outcome interpreted as probability is a real number). \begin{defn} \label{defn:observable} @@ -540,30 +540,210 @@ The counterpart of the random variable in the non-commutative probability theory Let $\mathscr{B}(\mathbb{R})$ be the set of all Borel sets on $\mathbb{R}$. - A random variable on the Hilbert space $\mathscr{H}$ is a projection-valued map (measure) $P:\mathscr{B}(\mathbb{R})\to\mathscr{P}$. + An (real-valued) observable (random variable) on the Hilbert space $\mathscr{H}$, denoted by $A$, is a projection-valued map (measure) $P_A:\mathscr{B}(\mathbb{R})\to\mathscr{P}(\mathscr{H})$. - With the following properties: + Satisfies the following properties: \begin{itemize} - \item $P(\emptyset)=O$ (the zero projection) - \item $P(\mathbb{R})=I$ (the identity projection) + \item $P_A(\emptyset)=O$ (the zero projection) + \item $P_A(\mathbb{R})=I$ (the identity projection) \item For any sequence $A_1,A_2,\cdots,A_n\in \mathscr{B}(\mathbb{R})$, the following holds: \begin{itemize} - \item $P(\bigcup_{i=1}^n A_i)=\bigvee_{i=1}^n P(A_i)$ - \item $P(\bigcap_{i=1}^n A_i)=\bigwedge_{i=1}^n P(A_i)$ - \item $P(A^c)=I-P(A)$ - \item If $A_j$ are mutually disjoint (that is $P(A_i)P(A_j)=P(A_j)P(A_i)=O$ for $i\neq j$), then $P(\bigcup_{j=1}^n A_j)=\sum_{j=1}^n P(A_j)$ + \item $P_A(\bigcup_{i=1}^n A_i)=\bigvee_{i=1}^n P_A(A_i)$ + \item $P_A(\bigcap_{i=1}^n A_i)=\bigwedge_{i=1}^n P_A(A_i)$ + \item $P_A(A^c)=I-P_A(A),\forall A\in\mathscr{B}(\mathbb{R})$ \end{itemize} \end{itemize} \end{defn} +If $A$ is an observable determined by the map $P_A:\mathcal{B}(\mathbb{R})\to\mathcal{P}(\mathscr{H})$, $P_A$ is a spectral measure (a complete additive orthogonal projection valued measure on $\mathcal{B}(\mathbb{R})$). And every spectral measure can be represented by an observable. \cite{parthasarathy2005mathematical} + +\begin{prop} + If $A_j$ are mutually disjoint (that is $P_A(A_i)P_A(A_j)=P_A(A_j)P_A(A_i)=O$ for $i\neq j$), then $P_A(\bigcup_{j=1}^n A_j)=\sum_{j=1}^n P_A(A_j)$ +\end{prop} + \begin{defn} \label{defn:probability_of_random_variable} Probability of a random variable: - For a system prepared in state $\rho$, the probability that the random variable given by the projection-valued measure $P$ is in the Borel set $A$ is $\operatorname{Tr}(\rho P(A))$. + Let $A$ be a real-valued observable on a Hilbert space $\mathscr{H}$. $\rho$ be a state. The probability of observing the outcome $E\in \mathcal{B}(\mathbb{R})$ is given by: + + $$ + \mu(E)=\operatorname{Tr}(\rho P_A(E)) + $$ \end{defn} -When operators commute, we recover classical probability measures. +Restriction of a quantum state to a commutative subalgebra defines an ordinary probability measure. + +\begin{examples} +Let +$$ +Z=\begin{pmatrix} +1 & 0\\ +0 & -1 +\end{pmatrix}. +$$ + +The eigenvalues of $Z$ are $+1$ and $-1$, with corresponding normalized eigenvectors + +$$ +\ket{0}=\begin{pmatrix}1\\0\end{pmatrix}, +\qquad +\ket{1}=\begin{pmatrix}0\\1\end{pmatrix}. +$$ + +The spectral projections are +$$ +P_Z(\{1\}) = \ket{0}\bra{0} += +\begin{pmatrix} +1 & 0\\ +0 & 0 +\end{pmatrix}, +\qquad +P_Z(\{-1\}) = \ket{1}\bra{1} += +\begin{pmatrix} +0 & 0\\ +0 & 1 +\end{pmatrix}. +$$ + +The associated projection-valued measure $P_Z$ satisfies +$$ +P_Z(\{1,-1\}) = I, +\qquad +P_Z(\emptyset)=0. +$$ + +%============================== +% 4. Example: X measurement and its PVM +%============================== + +Let +$$ +X=\begin{pmatrix} +0 & 1\\ +1 & 0 +\end{pmatrix}. +$$ + +The normalized eigenvectors of $X$ are +$$ +\ket{+}=\frac{1}{\sqrt{2}}\left(\ket{0}+\ket{1}\right), +\qquad +\ket{-}=\frac{1}{\sqrt{2}}\left(\ket{0}-\ket{1}\right), +$$ +with eigenvalues $+1$ and $-1$, respectively. + +The corresponding spectral projections are +$$ +P_X(\{1\}) = \ket{+}\bra{+} += +\frac{1}{2} +\begin{pmatrix} +1 & 1\\ +1 & 1 +\end{pmatrix}, +$$ +$$ +P_X(\{-1\}) = \ket{-}\bra{-} += +\frac{1}{2} +\begin{pmatrix} +1 & -1\\ +-1 & 1 +\end{pmatrix}. +$$ + +%============================== +% 5. Noncommutativity of the projections +%============================== + +Compute +$$ +P_Z(\{1\})P_X(\{1\}) += +\begin{pmatrix} +1 & 0\\ +0 & 0 +\end{pmatrix} +\cdot +\frac{1}{2} +\begin{pmatrix} +1 & 1\\ +1 & 1 +\end{pmatrix} += +\frac{1}{2} +\begin{pmatrix} +1 & 1\\ +0 & 0 +\end{pmatrix}. +$$ + +On the other hand, +$$ +P_X(\{1\})P_Z(\{1\}) += +\frac{1}{2} +\begin{pmatrix} +1 & 1\\ +1 & 1 +\end{pmatrix} +\cdot +\begin{pmatrix} +1 & 0\\ +0 & 0 +\end{pmatrix} += +\frac{1}{2} +\begin{pmatrix} +1 & 0\\ +1 & 0 +\end{pmatrix}. +$$ + +Since +$$ +P_Z(\{1\})P_X(\{1\}) \neq P_X(\{1\})P_Z(\{1\}), +$$ +the projections do not commute. + +Let $\rho$ be a density operator on $\mathbb C^2$, i.e. +$$ +\rho \ge 0, +\qquad +\operatorname{Tr}(\rho)=1. +$$ + +For a pure state $\ket{\psi}$, one has +$$ +\rho = \ket{\psi}\bra{\psi}. +$$ + +The probability that a measurement associated with a PVM $P$ yields an outcome in a Borel set $A$ is +$$ +\mathbb P(A) = \operatorname{Tr}(\rho\, P(A)). +$$ + +For example, let +$$ +\rho = \ket{0}\langle 0| += +\begin{pmatrix} +1 & 0\\ +0 & 0 +\end{pmatrix}. +$$ + +Then +$$ +\operatorname{Tr}\bigl(\rho\, P_Z(\{1\})\bigr) = 1, +\qquad +\operatorname{Tr}\bigl(\rho\, P_X(\{1\})\bigr) = \frac{1}{2}. +$$ + +\end{examples} \begin{defn} \label{defn:measurement} @@ -572,14 +752,14 @@ When operators commute, we recover classical probability measures. A measurement (observation) of a system prepared in a given state produces an outcome $x$, $x$ is a physical event that is a subset of the set of all possible outcomes. For each $x$, we associate a measurement operator $M_x$ on $\mathscr{H}$. Given the initial state (pure state, unit vector) $u$, the probability of measurement outcome $x$ is given by: - \[ + $$ p(x)=\|M_xu\|^2 - \] + $$ Note that to make sense of this definition, the collection of measurement operators $\{M_x\}$ must satisfy the completeness requirement: - \[ + $$ 1=\sum_{x\in X} p(x)=\sum_{x\in X}\|M_xu\|^2=\sum_{x\in X}\langle M_xu,M_xu\rangle=\langle u,(\sum_{x\in X}M_x^*M_x)u\rangle - \] + $$ So $\sum_{x\in X}M_x^*M_x=I$. \end{defn} diff --git a/chapters/chap1.pdf b/chapters/chap1.pdf index c9f509e..9b8ccc8 100644 Binary files a/chapters/chap1.pdf and b/chapters/chap1.pdf differ diff --git a/chapters/chap1.tex b/chapters/chap1.tex index c6bc7b7..5459d9d 100644 --- a/chapters/chap1.tex +++ b/chapters/chap1.tex @@ -505,10 +505,7 @@ Then we have bound for Lipschitz constant $\eta$ of the map $S(\varphi_A): \math \end{lemma} \begin{proof} - The proof use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$. - % - TODO: use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$. - % + Consider the Lipschitz constant of the function $g:A\otimes B\to \R$ defined as $g(\varphi)=H(M(\varphi_A))$, where $M:A\otimes B\to \mathcal{P}(A)$ is the complete von Neumann measurement and $H: \mathcal{P}(A)\otimes \mathcal{P}(B)\to \R$ is the Shannon entropy. \end{proof} From Levy's lemma, we have diff --git a/snippets/compile.sh b/snippets/compile.sh new file mode 100644 index 0000000..8c4be78 --- /dev/null +++ b/snippets/compile.sh @@ -0,0 +1,50 @@ +#!/bin/bash + +set -e + +echo "Starting batch processing of .tex files in chapters/ directory" +echo "===============================================================" + +total_files=$(find chapters -name "*.tex" -type f | wc -l) +processed_files=0 + +if [[ $total_files -eq 0 ]]; then + echo "No .tex files found in chapters/ directory" + exit 0 +fi + +echo "Found $total_files .tex file(s) to process" +echo "" + +for texfile in chapters/*.tex; do + if [[ -f "$texfile" ]]; then + processed_files=$((processed_files + 1)) + base="${texfile%.*}" + filename=$(basename "$texfile") + + echo "[$processed_files/$total_files] Processing: $filename" + echo " └─ Running biber on $base..." + if biber "$base" 2>&1 | tee -a "$base.biber.log"; then + echo " └─ Biber completed successfully" + else + echo " └─ ERROR: Biber failed for $filename" + echo " Check $base.biber.log for details" + exit 1 + fi + + echo " └─ Running pdflatex on $filename..." + if pdflatex -interaction=nonstopmode "$texfile" 2>&1 | tee -a "$base.pdflatex.log"; then + echo " └─ pdflatex completed successfully" + else + echo " └─ ERROR: pdflatex failed for $filename" + echo " Check $base.pdflatex.log for details" + exit 1 + fi + + echo " └─ Finished processing $filename" + echo "" + fi +done + +echo "===============================================================" +echo "Batch processing complete: Successfully processed $processed_files/$total_files file(s)"