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Preface

Non-commutative probability theory is a branch of generalized probability theory that studies the
probability of events in non-commutative algebras (e.g. the algebra of observables in quantum
mechanics). In the 20th century, non-commutative probability theory has been applied to the
study of quantum mechanics as the classical probability theory is not enough to describe quantum
mechanics [KM].

Recently, the concentration of measure phenomenon has been applied to the study of non-commutative
probability theory. Basically, the non-trivial observation, citing from Gromov’s work [Gro81], states
that an arbitrary 1-Lipschitz function f : Sn → R concentrates near a single value a0 ∈ R as strongly
as the distance function does. That is,

µ{x ∈ Sn : |f(x)− a0| ≥ ϵ} < κn(ϵ) ≤ 2 exp

(
−(n− 1)ϵ2

2

)
is applied to computing the probability that, given a bipartite system A ⊗ B, assume dim(B) ≥
dim(A) ≥ 3, as the dimension of the smaller system A increases, with very high probability, a
random pure state σ = |ψ⟩⟨ψ| selected from A ⊗ B is almost as good as the maximally entangled
state.

Mathematically, that is:

Let ψ ∈ P(A⊗B) be a random pure state on A⊗B.

If we define β = 1
ln(2)

dA
dB

, then we have

Pr[H(ψA) < log2(dA)− α− β] ≤ exp

(
− 1

8π2 ln(2)

(dAdB − 1)α2

(log2(dA))
2

)
where dB ≥ dA ≥ 3 [HLW06].

In this report, we will show the process of my exploration of the concentration of measure phe-
nomenon in the context of non-commutative probability theory. We assume the reader is an un-
dergraduate student in mathematics and is familiar with the basic concepts of probability theory,
measure theory, linear algebra, and some basic skills of mathematical analysis. To make the report
more self-contained, we will add detailed annotated proofs that I understand and references for the
original sources.
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How to use the dependency graph

Since our topic integrates almost everything I’ve learned during undergraduate study, I will try
to make some dependency graph for reader and for me to keep track of what are the necessary
knowledge to understand part of the report.

One can imagine the project as a big tree, where the root is in undergrad math and branches out
to the topics of the report, including many advanced topics and motivation to study them.

Linear Algebra
(bases, maps, eigenvalues)

Real Analysis
(limits, continuity, measure-lite)

Probability
(expectation, variance, concentration)

Topology/Geometry
(metrics, compactness)

Functional Analysis
(Lp, Hilbert spaces, operators)

Quantum Formalism
(states, observables, partial trace)

This Book
(Chapters 1–n)

Figure 1: Dependency tree: prerequisites and how they feed into the main text.
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Chapter 0: Brief definitions and basic
concepts

This section serve as reference for definitions and theorems that we will use later. This section can
be safely ignored if you are already familiar with the definitions and theorems.

But for the future self who might have no idea what I’m talking about, we will provided detailed
definitions to you to understand the concepts.

0.1 Complex vector spaces

The main vector space we are interested in is Cn; therefore, all the linear operators we defined are
from Cn to Cn.

We denote a vector in vector space as |ψ⟩ = (z1, . . . , zn) (might also be infinite dimensional, and
zi ∈ C).

A natural inner product space defined on Cn is given by the Hermitian inner product:

⟨ψ|φ⟩ =
n∑

i=1

ziz
∗
i

This satisfies the following properties:

1. ⟨ψ|
∑

i λi |φ⟩ =
∑

i λi⟨ψ|φ⟩ (linear on the second argument. Note that in physics [NC10] we
use linear on the second argument and conjugate linear on the first argument. But in math, we
use linear on the first argument and conjugate linear on the second argument [Axler˙2024].
As promised in the beginning, we will use the physics convention in this report.)

2. ⟨φ|ψ⟩ = (⟨ψ|φ⟩)∗

3. ⟨ψ|ψ⟩ ≥ 0 with equality if and only if |ψ⟩ = 0

Here ψ is just a label for the vector, and you don’t need to worry about it too much. This is also
called the ket, where the counterpart:

• ⟨ψ⟩ is called the bra, used to denote the vector dual to ψ; such an element is a linear functional
if you really want to know what that is.
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• ⟨ψ|φ⟩ is the inner product between two vectors, and ⟨ψ|A |φ⟩ is the inner product between
A |φ⟩ and ⟨ψ|, or equivalently A† ⟨ψ| and |φ⟩.

• Given a complex matrix A = Cn×n,

1. A∗ is the complex conjugate of A. i.e.,

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A∗ =

1− i 2− i 3− i
4− i 5− i 6− i
7− i 8− i 9− i


2. A⊤ denotes the transpose of A. i.e.,

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A⊤ =

1 + i 4 + i 7 + i
2 + i 5 + i 8 + i
3 + i 6 + i 9 + i


3. A† = (A∗)⊤ denotes the complex conjugate transpose, referred to as the adjoint, or

Hermitian conjugate of A. i.e.,

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A† =

1− i 4− i 7− i
2− i 5− i 8− i
3− i 6− i 9− i


4. A is unitary if A†A = AA† = I.

5. A is hermitian (self-adjoint in mathematics literature) if A† = A.

Motivation of Tensor product

Recall from the traditional notation of product space of two vector spaces V andW , that is, V ×W ,
is the set of all ordered pairs (|v⟩ , |w⟩) where |v⟩ ∈ V and |w⟩ ∈W .

The space has dimension dimV + dimW .

We want to define a vector space with the notation of multiplication of two vectors from different
vector spaces.

That is

(|v1⟩+ |v2⟩)⊗ |w⟩ = (|v1⟩ ⊗ |w⟩) + (|v2⟩ ⊗ |w⟩)

|v⟩ ⊗ (|w1⟩+ |w2⟩) = (|v⟩ ⊗ |w1⟩) + (|v⟩ ⊗ |w2⟩)

and enables scalar multiplication by

λ(|v⟩ ⊗ |w⟩) = (λ |v⟩)⊗ |w⟩ = |v⟩ ⊗ (λ |w⟩)

And we wish to build a way to associate the basis of V and W with the basis of V ⊗W . That
makes the tensor product a vector space with dimension dimV × dimW .
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Definition 1. Definition of linear functional

A linear functional is a linear map from V to F.

Note the difference between a linear functional and a linear map.

A generalized linear map is a function f : V →W satisfying the condition.

• f(|u⟩+ |v⟩) = f(|u⟩) + f(|v⟩)

• f(λ |v⟩) = λf(|v⟩)

Definition 2. A bilinear functional is a bilinear function β : V ×W → F satisfying the condition
that |v⟩ → β(|v⟩ , |w⟩) is a linear functional for all |w⟩ ∈ W and |w⟩ → β(|v⟩ , |w⟩) is a linear
functional for all |v⟩ ∈ V .

The vector space of all bilinear functionals is denoted by B(V,W ).

Definition 3. Let V,W be two vector spaces.

Let V ′ and W ′ be the dual spaces of V and W , respectively, that is V ′ = {ψ : V → F} and
W ′ = {ϕ :W → F}, ψ, ϕ are linear functionals.

The tensor product of vectors v ∈ V and w ∈ W is the bilinear functional defined by ∀(ψ, ϕ) ∈
V ′ ×W ′ given by the notation

(v ⊗ w)(ψ, ϕ) := ψ(v)ϕ(w)

The tensor product of two vector spaces V and W is the vector space B(V ′,W ′)

Notice that the basis of such vector space is the linear combination of the basis of V ′ and W ′, that
is, if {ei} is the basis of V ′ and {fj} is the basis of W ′, then {ei ⊗ fj} is the basis of B(V ′,W ′).

That is, every element of B(V ′,W ′) can be written as a linear combination of the basis.

Since {ei} and {fj} are bases of V ′ and W ′, respectively, then we can always find a set of linear
functionals {ϕi} and {ψj} such that ϕi(ej) = δij and ψj(fi) = δij.

Here δij =

{
1 if i = j

0 otherwise
is the Kronecker delta.

V ⊗W =


n∑

i=1

m∑
j=1

aijϕi(v)ψj(w) : ϕi ∈ V ′, ψj ∈W ′


Note that

∑n
i=1

∑m
j=1 aijϕi(v)ψj(w) is a bilinear functional that maps V ′ ×W ′ to F.

This enables basis-free construction of vector spaces with proper multiplication and scalar multi-
plication.

This vector space is equipped with the unique inner product ⟨v ⊗ w, u⊗ x⟩V⊗W defined by

⟨v ⊗ w, u⊗ x⟩ = ⟨v, u⟩V ⟨w, x⟩W
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In practice, we ignore the subscript of the vector space and just write ⟨v⊗w, u⊗ x⟩ = ⟨v, u⟩⟨w, x⟩.

This introduces a new model in mathematics explaining quantum mechanics: the non-commutative
probability theory.

0.2 Non-commutative probability theory

The non-commutative probability theory is a branch of generalized probability theory that studies
the probability of events in non-commutative algebras.

There are several main components of the generalized probability theory; let’s see how we can
formulate them, comparing with the classical probability theory.

First, we define the Hilbert space in case one did not make the step from the linear algebra courses
like me.

Definition 4. Hilbert space:

A Hilbert space is a complete inner product space.

That is, a vector space equipped with an inner product that is complete (every Cauchy sequence
converges to a limit).

To introduce an example of Hilbert space we use when studying quantum mechanics, we need to
introduce a common inner product used in Cn.

Definition 5. Hermitian inner product:

On Cn, the Hermitian inner product is defined by

⟨u, v⟩ =
n∑

i=1

uivi

Proposition 6. The Hermitian inner product on the complex vector space Cn makes it a Hilbert
space.

Proof. We first verify that the Hermitian inner product

⟨u, v⟩ =
n∑

i=1

uivi

on Cn satisfies the axioms of an inner product:

1. Conjugate symmetry: For all u, v ∈ Cn,

⟨u, v⟩ =
n∑

i=1

uivi =

n∑
i=1

viui = ⟨v, u⟩.

2. Linearity: For any u, v, w ∈ Cn and scalars a, b ∈ C, we have

⟨u, av + bw⟩ =
n∑

i=1

ui(avi + bwi) = a⟨u, v⟩+ b⟨u,w⟩.
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3. Positive definiteness: For every u = (u1, u2, · · · , un) ∈ Cn, let uj = aj + bji, where
aj , bj ∈ R.

⟨u, u⟩ =
n∑

j=1

ujuj =

n∑
i=1

(a2i + b2i ) ≥ 0,

with equality if and only if u = 0.

Therefore, the Hermitian inner product is an inner product.

Next, we show that Cn is complete with respect to the norm induced by this inner product:

∥u∥ =
√
⟨u, u⟩.

Since Cn is finite-dimensional, every Cauchy sequence (with respect to any norm) converges in
Cn. This is a standard result in finite-dimensional normed spaces, which implies that Cn is indeed
complete.

Therefore, since the Hermitian inner product fulfills the inner product axioms and Cn is complete,
the complex vector space Cn with the Hermitian inner product is a Hilbert space.

Another classical example of Hilbert space is L2(Ω,F, P ), where (Ω,F, P ) is a measure space (Ω is
a set, F is a σ-algebra on Ω, and P is a measure on F). The L2 space is the space of all function
on Ω that is

1. square integrable: square integrable functions are the functions f : Ω → C such that∫
Ω
|f(ω)|2dP (ω) <∞

with inner product defined by

⟨f, g⟩ =
∫
Ω
f(ω)g(ω)dP (ω)

2. complex-valued: functions are complex-valued measurable. f = u+ vi is complex-valued if
u and v are real-valued measurable.

Proposition 7. L2(Ω,F, P ) is a Hilbert space.

Proof. We check the two conditions of the Hilbert space:

• Completeness: Let (fn) be a Cauchy sequence in L2(Ω,F, P ). Then for any ϵ > 0, there exists
an N such that for all m,n ≥ N , we have∫

Ω
|fm(ω)− fn(ω)|2dP (ω) < ϵ2

This means that (fn) is a Cauchy sequence in the norm of L2(Ω,F, P ).
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• Inner product: The inner product is defined by

⟨f, g⟩ =
∫
Ω
f(ω)g(ω)dP (ω)

This is a well-defined inner product on L2(Ω,F, P ). We can check the properties of the inner
product:

– Linearity:
⟨af + bg, h⟩ = a⟨f, h⟩+ b⟨g, h⟩

– Conjugate symmetry:
⟨f, g⟩ = ⟨g, f⟩

– Positive definiteness:
⟨f, f⟩ ≥ 0

Let H be a Hilbert space. H consists of complex-valued functions on a finite set Ω = {1, 2, · · · , n},
and the functions (e1, e2, · · · , en) form an orthonormal basis of H. (We use Dirac notation |k⟩ to
denote the basis vector ek [Par92].)

As an analog to the classical probability space (Ω,F, µ), which consists of a sample space Ω and
a probability measure µ on the state space F, the non-commutative probability space (H,P, ρ)
consists of a Hilbert space H and a state ρ on the space of all orthogonal projections P.

The detailed definition of the non-commutative probability space is given below:

Definition 8. Non-commutative probability space:

A non-commutative probability space is a pair (B(H),P), where B(H) is the set of all bounded
linear operators on H.

A linear operator on H is bounded if for all u such that ∥u∥ ≤ 1, we have ∥Au∥ ≤ M for some
M > 0.

P is the set of all orthogonal projections on B(H).

The set P = {P ∈ B(H) : P ∗ = P = P 2} is the set of all orthogonal projections on B(H).

Recall from classical probability theory, we call the initial probability distribution for possible
outcomes in the classical probability theory as our state, simillarly, we need to define the state in
the non-commutative probability theory.

Definition 9. Non-commutative probability state:

A state on (B(H),P) is a map ρ : P → [0, 1], (commonly named as density operator) such that:

• ρ(O) = 0, where O is the zero projection, and ρ(I) = 1, where I is the identity projection.

• If P1, P2, . . . , Pn are pairwise disjoint orthogonal projections, then ρ(P1 + P2 + · · · + Pn) =∑n
i=1 ρ(Pi).

8



An example of a density operator can be given as follows:

If (|ψ1⟩, |ψ2⟩, · · · , |ψn⟩) is an orthonormal basis of H consisting of eigenvectors of ρ, for the eigen-
values p1, p2, · · · , pn, then pj ≥ 0 and

∑n
j=1 pj = 1.

We can write ρ as

ρ =
n∑

j=1

pj |ψj⟩⟨ψj |

(Under basis |ψj⟩, it is a diagonal matrix with pj on the diagonal.)

The counterpart of the random variable in the non-commutative probability theory is called an
observable, which is a Hermitian operator on H (for all ψ, ϕ in the domain of A, we have ⟨Aψ, ϕ⟩ =
⟨ψ,Aϕ⟩. This kind of operator ensures that our outcome interpreted as probability is a real number).

Definition 10. Observable:

Let B(R) be the set of all Borel sets on R.

A random variable on the Hilbert space H is a projection-valued map (measure) P : B(R) → P.

With the following properties:

• P (∅) = O (the zero projection)

• P (R) = I (the identity projection)

• For any sequence A1, A2, · · · , An ∈ B(R), the following holds:

– P (
⋃n

i=1Ai) =
∨n

i=1 P (Ai)

– P (
⋂n

i=1Ai) =
∧n

i=1 P (Ai)

– P (Ac) = I − P (A)

– If Aj are mutually disjoint (that is P (Ai)P (Aj) = P (Aj)P (Ai) = O for i ̸= j), then
P (

⋃n
j=1Aj) =

∑n
j=1 P (Aj)

Definition 11. Probability of a random variable:

For a system prepared in state ρ, the probability that the random variable given by the projection-
valued measure P is in the Borel set A is Tr(ρP (A)).

When operators commute, we recover classical probability measures.

Definition 12. Definition of measurement:

A measurement (observation) of a system prepared in a given state produces an outcome x, x is
a physical event that is a subset of the set of all possible outcomes. For each x, we associate a
measurement operator Mx on H.

Given the initial state (pure state, unit vector) u, the probability of measurement outcome x is given
by:

p(x) = ∥Mxu∥2

9



Note that to make sense of this definition, the collection of measurement operators {Mx} must
satisfy the completeness requirement:

1 =
∑
x∈X

p(x) =
∑
x∈X

∥Mxu∥2 =
∑
x∈X

⟨Mxu,Mxu⟩ = ⟨u, (
∑
x∈X

M∗
xMx)u⟩

So
∑

x∈X M∗
xMx = I.

Proposition 13. Proposition of indistinguishability:

Suppose that we have two systems u1, u2 ∈ H1, the two states are distinguishable if and only if they
are orthogonal.

Proof. Ways to distinguish the two states:

1. Set X = {0, 1, 2} and Mi = |ui⟩⟨ui|, M0 = I −M1 −M2

2. Then {M0,M1,M2} is a complete collection of measurement operators on H.

3. Suppose the prepared state is u1, then p(1) = ∥M1u1∥2 = ∥u1∥2 = 1, p(2) = ∥M2u1∥2 = 0,
p(0) = ∥M0u1∥2 = 0.

If they are not orthogonal, then there is no choice of measurement operators to perfectly distinguish
the two states.

Intuitively, if the two states are not orthogonal, then for any measurement (projection) there exists
non-zero probability of getting the same outcome for both states.

Here is Table 1.1 summarizing the analog of classical probability theory and non-commutative
(quantum) probability theory [Fer]:

Table 1: Analog of classical probability theory and non-commutative (quantum) probability theory
Classical probability Non-commutative probability

Sample space Ω, cardinality |Ω| = n, example: Ω = {0, 1} Complex Hilbert space H, dimension dimH = n, example: H = C2

Common algebra of C valued functions Algebra of bounded operators B(H)

f 7→ f̄ complex conjugation P 7→ P∗ adjoint

Events: indicator functions of sets Projections: space of orthogonal projections P ⊆ B(H)

functions f such that f2 = f = f orthogonal projections P such that P∗ = P = P2

R-valued functions f = f self-adjoint operators A = A∗

I
f−1({λ}) is the indicator function of the set f−1({λ}) P (λ) is the orthogonal projection to eigenspace

f =
∑

λ∈Range(f) λIf−1({λ}) A =
∑

λ∈sp(A) λP (λ)

Probability measure µ on Ω Density operator ρ on H

Delta measure δω Pure state ρ = |ψ⟩⟨ψ|

µ is non-negative measure and
∑n

i=1 µ({i}) = 1 ρ is positive semi-definite and Tr(ρ) = 1

Expected value of random variable f is Eµ(f) =
∑n

i=1 f(i)µ({i}) Expected value of operator A is Eρ(A) = Tr(ρA)

Variance of random variable f is Varµ(f) =
∑n

i=1(f(i) − Eµ(f))2µ({i}) Variance of operator A is Varρ(A) = Tr(ρA2) − Tr(ρA)2

Covariance of random variables f and g is Covµ(f, g) =
∑n

i=1(f(i) −
Eµ(f))(g(i) − Eµ(g))µ({i})

Covariance of operators A and B is Covρ(A,B) = Tr(ρA ◦ B) −
Tr(ρA) Tr(ρB)

Composite system is given by Cartesian product of the sample spaces
Ω1 × Ω2

Composite system is given by tensor product of the Hilbert spaces H1⊗H2

Product measure µ1 × µ2 on Ω1 × Ω2 Tensor product of space ρ1 ⊗ ρ2 on H1 ⊗ H2

Marginal distribution π∗v Partial trace Tr2(ρ)
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Chapter 1

Concentration of Measure And
Quantum Entanglement

As the future version of me might forgot everything we have over the summer, as I did for now, I
will make a review again from the simple definition to recall the necessary information to tell you
why we are here and how we are going to proceed.

First, we will build the mathematical model describing the behavior of quantum system and why
they makes sense for physicists and meaningful for general publics.

1.1 Motivation

First, we introduce a motivation for introducing non-commutative probability theory to the study
of quantum mechanics. This section is mainly based on the book [KM].

1.1.1 Light polarization and the violation of Bell’s inequality

The light which comes through a polarizer is polarized in a certain direction. If we fix the first
filter and rotate the second filter, we will observe the intensity of the light will change.

The light intensity decreases with α (the angle between the two filters). The light should vanish
when α = π/2.

However, for a system of 3 polarizing filters F1, F2, F3, having directions α1, α2, α3, if we put them
on the optical bench in pairs, then we will have three random variables P1, P2, P3.

11



Figure 1.1: The light polarization experiment, image from [KM]

Theorem 14. Bell’s 3 variable inequality:

For any three random variables P1, P2, P3 in a classical probability space, we have

Prob(P1 = 1, P3 = 0) ≤ Prob(P1 = 1, P2 = 0) + Prob(P2 = 1, P3 = 0)

Proof. By the law of total probability there are only two possibility if we don’t observe any light
passing the filter pair Fi, Fj , it means the photon is either blocked by Fi or Fj , it means

Prob(P1 = 1, P3 = 0) = Prob(P1 = 1, P2 = 0, P3 = 0)

+ Prob(P1 = 1, P2 = 1, P3 = 0)

≤ Prob(P1 = 1, P2 = 0) + Prob(P2 = 1, P3 = 0)

However, according to our experimental measurement, for any pair of polarizers Fi, Fj , by the
complement rule, we have

Prob(Pi = 1, Pj = 0) = Prob(Pi = 1)− Prob(Pi = 1, Pj = 1)

=
1

2
− 1

2
cos2(αi − αj)

=
1

2
sin2(αi − αj)

This leads to a contradiction if we apply the inequality to the experimental data.
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1

2
sin2(α1 − α3) ≤

1

2
sin2(α1 − α2) +

1

2
sin2(α2 − α3)

If α1 = 0, α2 =
π
6 , α3 =

π
3 , then

1

2
sin2(−π

3
) ≤ 1

2
sin2(−π

6
) +

1

2
sin2(

π

6
− π

3
)

3

8
≤ 1

8
+

1

8
3

8
≤ 1

4

Other revised experiments (e.g., Aspect’s experiment, calcium entangled photon experiment) are
also conducted and the inequality is still violated.

1.1.2 The true model of light polarization

The full description of the light polarization is given below:

State of polarization of a photon: ψ = α|0⟩ + β|1⟩, where |0⟩ and |1⟩ are the two orthogonal
polarization states in C2.

Polarization filter (generalized 0,1 valued random variable): orthogonal projection Pα on C2 corre-
sponding to the direction α (operator satisfies P ∗

α = Pα = P 2
α).

The matrix representation of Pα is given by

Pα =

(
cos2(α) cos(α) sin(α)

cos(α) sin(α) sin2(α)

)
Probability of a photon passing through the filter Pα is given by ⟨Pαψ,ψ⟩; this is cos2(α) if we set
ψ = |0⟩.

Since the probability of a photon passing through the three filters is not commutative, it is impos-
sible to discuss Prob(P1 = 1, P3 = 0) in the classical setting.

The main vector space we are interested in is Cn; therefore, all the linear operators we defined are
from Cn to Cn.

We denote a vector in vector space as |ψ⟩ = (z1, . . . , zn) (might also be infinite dimensional, and
zi ∈ C).

A natural inner product space defined on Cn is given by the Hermitian inner product:

⟨ψ|φ⟩ =
n∑

i=1

ziz
∗
i

This satisfies the following properties:
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1. ⟨ψ|
∑

i λi |φ⟩ =
∑

i λi⟨ψ|φ⟩ (linear on the second argument. Note that in physics [NC10] we
use linear on the second argument and conjugate linear on the first argument. But in math, we
use linear on the first argument and conjugate linear on the second argument [Axler˙2024].
As promised in the beginning, we will use the physics convention in this report.)

2. ⟨φ|ψ⟩ = (⟨ψ|φ⟩)∗

3. ⟨ψ|ψ⟩ ≥ 0 with equality if and only if |ψ⟩ = 0

Here ψ is just a label for the vector, and you don’t need to worry about it too much. This is also
called the ket, where the counterpart:

• ⟨ψ⟩ is called the bra, used to denote the vector dual to ψ; such an element is a linear functional
if you really want to know what that is.

• ⟨ψ|φ⟩ is the inner product between two vectors, and ⟨ψ|A |φ⟩ is the inner product between
A |φ⟩ and ⟨ψ|, or equivalently A† ⟨ψ| and |φ⟩.

• Given a complex matrix A = Cn×n,

1. A∗ is the complex conjugate of A. i.e.,

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A∗ =

1− i 2− i 3− i
4− i 5− i 6− i
7− i 8− i 9− i


2. A⊤ denotes the transpose of A. i.e.,

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A⊤ =

1 + i 4 + i 7 + i
2 + i 5 + i 8 + i
3 + i 6 + i 9 + i


3. A† = (A∗)⊤ denotes the complex conjugate transpose, referred to as the adjoint, or

Hermitian conjugate of A. i.e.,

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A† =

1− i 4− i 7− i
2− i 5− i 8− i
3− i 6− i 9− i


4. A is unitary if A†A = AA† = I.

5. A is hermitian (self-adjoint in mathematics literature) if A† = A.

Motivation of Tensor product

Recall from the traditional notation of product space of two vector spaces V andW , that is, V ×W ,
is the set of all ordered pairs (|v⟩ , |w⟩) where |v⟩ ∈ V and |w⟩ ∈W .

The space has dimension dimV + dimW .

We want to define a vector space with the notation of multiplication of two vectors from different
vector spaces.
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That is

(|v1⟩+ |v2⟩)⊗ |w⟩ = (|v1⟩ ⊗ |w⟩) + (|v2⟩ ⊗ |w⟩)
|v⟩ ⊗ (|w1⟩+ |w2⟩) = (|v⟩ ⊗ |w1⟩) + (|v⟩ ⊗ |w2⟩)

and enables scalar multiplication by

λ(|v⟩ ⊗ |w⟩) = (λ |v⟩)⊗ |w⟩ = |v⟩ ⊗ (λ |w⟩)

And we wish to build a way to associate the basis of V and W with the basis of V ⊗W . That
makes the tensor product a vector space with dimension dimV × dimW .

Definition 15. Definition of linear functional

A linear functional is a linear map from V to F.

Note the difference between a linear functional and a linear map.

A generalized linear map is a function f : V →W satisfying the condition.

• f(|u⟩+ |v⟩) = f(|u⟩) + f(|v⟩)

• f(λ |v⟩) = λf(|v⟩)

Definition 16. A bilinear functional is a bilinear function β : V ×W → F satisfying the condition
that |v⟩ → β(|v⟩ , |w⟩) is a linear functional for all |w⟩ ∈ W and |w⟩ → β(|v⟩ , |w⟩) is a linear
functional for all |v⟩ ∈ V .

The vector space of all bilinear functionals is denoted by B(V,W ).

Definition 17. Let V,W be two vector spaces.

Let V ′ and W ′ be the dual spaces of V and W , respectively, that is V ′ = {ψ : V → F} and
W ′ = {ϕ :W → F}, ψ, ϕ are linear functionals.

The tensor product of vectors v ∈ V and w ∈ W is the bilinear functional defined by ∀(ψ, ϕ) ∈
V ′ ×W ′ given by the notation

(v ⊗ w)(ψ, ϕ) := ψ(v)ϕ(w)

The tensor product of two vector spaces V and W is the vector space B(V ′,W ′)

Notice that the basis of such vector space is the linear combination of the basis of V ′ and W ′, that
is, if {ei} is the basis of V ′ and {fj} is the basis of W ′, then {ei ⊗ fj} is the basis of B(V ′,W ′).

That is, every element of B(V ′,W ′) can be written as a linear combination of the basis.

Since {ei} and {fj} are bases of V ′ and W ′, respectively, then we can always find a set of linear
functionals {ϕi} and {ψj} such that ϕi(ej) = δij and ψj(fi) = δij.

Here δij =

{
1 if i = j

0 otherwise
is the Kronecker delta.
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V ⊗W =


n∑

i=1

m∑
j=1

aijϕi(v)ψj(w) : ϕi ∈ V ′, ψj ∈W ′


Note that

∑n
i=1

∑m
j=1 aijϕi(v)ψj(w) is a bilinear functional that maps V ′ ×W ′ to F.

This enables basis-free construction of vector spaces with proper multiplication and scalar multi-
plication.

This vector space is equipped with the unique inner product ⟨v ⊗ w, u⊗ x⟩V⊗W defined by

⟨v ⊗ w, u⊗ x⟩ = ⟨v, u⟩V ⟨w, x⟩W

In practice, we ignore the subscript of the vector space and just write ⟨v⊗w, u⊗ x⟩ = ⟨v, u⟩⟨w, x⟩.

This introduces a new model in mathematics explaining quantum mechanics: the non-commutative
probability theory.

1.2 Non-commutative probability theory

The non-commutative probability theory is a branch of generalized probability theory that studies
the probability of events in non-commutative algebras.

There are several main components of the generalized probability theory; let’s see how we can
formulate them, comparing with the classical probability theory.

First, we define the Hilbert space in case one did not make the step from the linear algebra courses
like me.

Definition 18. Hilbert space:

A Hilbert space is a complete inner product space.

That is, a vector space equipped with an inner product that is complete (every Cauchy sequence
converges to a limit).

To introduce an example of Hilbert space we use when studying quantum mechanics, we need to
introduce a common inner product used in Cn.

Definition 19. Hermitian inner product:

On Cn, the Hermitian inner product is defined by

⟨u, v⟩ =
n∑

i=1

uivi

Proposition 20. The Hermitian inner product on the complex vector space Cn makes it a Hilbert
space.
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Proof. We first verify that the Hermitian inner product

⟨u, v⟩ =
n∑

i=1

uivi

on Cn satisfies the axioms of an inner product:

1. Conjugate symmetry: For all u, v ∈ Cn,

⟨u, v⟩ =
n∑

i=1

uivi =

n∑
i=1

viui = ⟨v, u⟩.

2. Linearity: For any u, v, w ∈ Cn and scalars a, b ∈ C, we have

⟨u, av + bw⟩ =
n∑

i=1

ui(avi + bwi) = a⟨u, v⟩+ b⟨u,w⟩.

3. Positive definiteness: For every u = (u1, u2, · · · , un) ∈ Cn, let uj = aj + bji, where
aj , bj ∈ R.

⟨u, u⟩ =
n∑

j=1

ujuj =

n∑
i=1

(a2i + b2i ) ≥ 0,

with equality if and only if u = 0.

Therefore, the Hermitian inner product is an inner product.

Next, we show that Cn is complete with respect to the norm induced by this inner product:

∥u∥ =
√
⟨u, u⟩.

Since Cn is finite-dimensional, every Cauchy sequence (with respect to any norm) converges in
Cn. This is a standard result in finite-dimensional normed spaces, which implies that Cn is indeed
complete.

Therefore, since the Hermitian inner product fulfills the inner product axioms and Cn is complete,
the complex vector space Cn with the Hermitian inner product is a Hilbert space.

Another classical example of Hilbert space is L2(Ω,F, P ), where (Ω,F, P ) is a measure space (Ω is
a set, F is a σ-algebra on Ω, and P is a measure on F). The L2 space is the space of all function
on Ω that is

1. square integrable: square integrable functions are the functions f : Ω → C such that∫
Ω
|f(ω)|2dP (ω) <∞

with inner product defined by

⟨f, g⟩ =
∫
Ω
f(ω)g(ω)dP (ω)
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2. complex-valued: functions are complex-valued measurable. f = u+ vi is complex-valued if
u and v are real-valued measurable.

Proposition 21. L2(Ω,F, P ) is a Hilbert space.

Proof. We check the two conditions of the Hilbert space:

• Completeness: Let (fn) be a Cauchy sequence in L2(Ω,F, P ). Then for any ϵ > 0, there exists
an N such that for all m,n ≥ N , we have∫

Ω
|fm(ω)− fn(ω)|2dP (ω) < ϵ2

This means that (fn) is a Cauchy sequence in the norm of L2(Ω,F, P ).

• Inner product: The inner product is defined by

⟨f, g⟩ =
∫
Ω
f(ω)g(ω)dP (ω)

This is a well-defined inner product on L2(Ω,F, P ). We can check the properties of the inner
product:

– Linearity:

⟨af + bg, h⟩ = a⟨f, h⟩+ b⟨g, h⟩

– Conjugate symmetry:

⟨f, g⟩ = ⟨g, f⟩

– Positive definiteness:

⟨f, f⟩ ≥ 0

Let H be a Hilbert space. H consists of complex-valued functions on a finite set Ω = {1, 2, · · · , n},
and the functions (e1, e2, · · · , en) form an orthonormal basis of H. (We use Dirac notation |k⟩ to
denote the basis vector ek [Par92].)

As an analog to the classical probability space (Ω,F, µ), which consists of a sample space Ω and
a probability measure µ on the state space F, the non-commutative probability space (H,P, ρ)
consists of a Hilbert space H and a state ρ on the space of all orthogonal projections P.

The detailed definition of the non-commutative probability space is given below:

Definition 22. Non-commutative probability space:

A non-commutative probability space is a pair (B(H),P), where B(H) is the set of all bounded
linear operators on H.

A linear operator on H is bounded if for all u such that ∥u∥ ≤ 1, we have ∥Au∥ ≤ M for some
M > 0.
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P is the set of all orthogonal projections on B(H).

The set P = {P ∈ B(H) : P ∗ = P = P 2} is the set of all orthogonal projections on B(H).

Recall from classical probability theory, we call the initial probability distribution for possible
outcomes in the classical probability theory as our state, simillarly, we need to define the state in
the non-commutative probability theory.

Definition 23. Non-commutative probability state:

A state on (B(H),P) is a map ρ : P → [0, 1], (commonly named as density operator) such that:

• ρ(O) = 0, where O is the zero projection, and ρ(I) = 1, where I is the identity projection.

• If P1, P2, . . . , Pn are pairwise disjoint orthogonal projections, then ρ(P1 + P2 + · · · + Pn) =∑n
i=1 ρ(Pi).

An example of a density operator can be given as follows:

If (|ψ1⟩, |ψ2⟩, · · · , |ψn⟩) is an orthonormal basis of H consisting of eigenvectors of ρ, for the eigen-
values p1, p2, · · · , pn, then pj ≥ 0 and

∑n
j=1 pj = 1.

We can write ρ as

ρ =
n∑

j=1

pj |ψj⟩⟨ψj |

(Under basis |ψj⟩, it is a diagonal matrix with pj on the diagonal.)

The counterpart of the random variable in the non-commutative probability theory is called an
observable, which is a Hermitian operator on H (for all ψ, ϕ in the domain of A, we have ⟨Aψ, ϕ⟩ =
⟨ψ,Aϕ⟩. This kind of operator ensures that our outcome interpreted as probability is a real number).

Definition 24. Observable:

Let B(R) be the set of all Borel sets on R.

A random variable on the Hilbert space H is a projection-valued map (measure) P : B(R) → P.

With the following properties:

• P (∅) = O (the zero projection)

• P (R) = I (the identity projection)

• For any sequence A1, A2, · · · , An ∈ B(R), the following holds:

– P (
⋃n

i=1Ai) =
∨n

i=1 P (Ai)

– P (
⋂n

i=1Ai) =
∧n

i=1 P (Ai)

– P (Ac) = I − P (A)

– If Aj are mutually disjoint (that is P (Ai)P (Aj) = P (Aj)P (Ai) = O for i ̸= j), then
P (

⋃n
j=1Aj) =

∑n
j=1 P (Aj)
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Definition 25. Probability of a random variable:

For a system prepared in state ρ, the probability that the random variable given by the projection-
valued measure P is in the Borel set A is Tr(ρP (A)).

When operators commute, we recover classical probability measures.

Definition 26. Definition of measurement:

A measurement (observation) of a system prepared in a given state produces an outcome x, x is
a physical event that is a subset of the set of all possible outcomes. For each x, we associate a
measurement operator Mx on H.

Given the initial state (pure state, unit vector) u, the probability of measurement outcome x is given
by:

p(x) = ∥Mxu∥2

Note that to make sense of this definition, the collection of measurement operators {Mx} must
satisfy the completeness requirement:

1 =
∑
x∈X

p(x) =
∑
x∈X

∥Mxu∥2 =
∑
x∈X

⟨Mxu,Mxu⟩ = ⟨u, (
∑
x∈X

M∗
xMx)u⟩

So
∑

x∈X M∗
xMx = I.

Proposition 27. Proposition of indistinguishability:

Suppose that we have two systems u1, u2 ∈ H1, the two states are distinguishable if and only if they
are orthogonal.

Proof. Ways to distinguish the two states:

1. Set X = {0, 1, 2} and Mi = |ui⟩⟨ui|, M0 = I −M1 −M2

2. Then {M0,M1,M2} is a complete collection of measurement operators on H.

3. Suppose the prepared state is u1, then p(1) = ∥M1u1∥2 = ∥u1∥2 = 1, p(2) = ∥M2u1∥2 = 0,
p(0) = ∥M0u1∥2 = 0.

If they are not orthogonal, then there is no choice of measurement operators to perfectly distinguish
the two states.

Intuitively, if the two states are not orthogonal, then for any measurement (projection) there exists
non-zero probability of getting the same outcome for both states.

Here is Table 1.1 summarizing the analog of classical probability theory and non-commutative
(quantum) probability theory [Fer]:
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Table 1.1: Analog of classical probability theory and non-commutative (quantum) probability the-
ory

Classical probability Non-commutative probability

Sample space Ω, cardinality |Ω| = n, example: Ω = {0, 1} Complex Hilbert space H, dimension dimH = n, example: H = C2

Common algebra of C valued functions Algebra of bounded operators B(H)

f 7→ f̄ complex conjugation P 7→ P∗ adjoint

Events: indicator functions of sets Projections: space of orthogonal projections P ⊆ B(H)

functions f such that f2 = f = f orthogonal projections P such that P∗ = P = P2

R-valued functions f = f self-adjoint operators A = A∗

I
f−1({λ}) is the indicator function of the set f−1({λ}) P (λ) is the orthogonal projection to eigenspace

f =
∑

λ∈Range(f) λIf−1({λ}) A =
∑

λ∈sp(A) λP (λ)

Probability measure µ on Ω Density operator ρ on H

Delta measure δω Pure state ρ = |ψ⟩⟨ψ|

µ is non-negative measure and
∑n

i=1 µ({i}) = 1 ρ is positive semi-definite and Tr(ρ) = 1

Expected value of random variable f is Eµ(f) =
∑n

i=1 f(i)µ({i}) Expected value of operator A is Eρ(A) = Tr(ρA)

Variance of random variable f is Varµ(f) =
∑n

i=1(f(i) − Eµ(f))2µ({i}) Variance of operator A is Varρ(A) = Tr(ρA2) − Tr(ρA)2

Covariance of random variables f and g is Covµ(f, g) =
∑n

i=1(f(i) −
Eµ(f))(g(i) − Eµ(g))µ({i})

Covariance of operators A and B is Covρ(A,B) = Tr(ρA ◦ B) −
Tr(ρA) Tr(ρB)

Composite system is given by Cartesian product of the sample spaces
Ω1 × Ω2

Composite system is given by tensor product of the Hilbert spaces H1⊗H2

Product measure µ1 × µ2 on Ω1 × Ω2 Tensor product of space ρ1 ⊗ ρ2 on H1 ⊗ H2

Marginal distribution π∗v Partial trace Tr2(ρ)

1.3 Concentration of measure phenomenon

Definition 28. η-Lipschitz function

Let (X,distX) and (Y,distY ) be two metric spaces. A function f : X → Y is said to be η-Lipschitz
if there exists a constant L ∈ R such that

distY (f(x), f(y)) ≤ LdistX(x, y)

for all x, y ∈ X. And η = ∥f∥Lip = infL∈R L.

That basically means that the function f should not change the distance between any two pairs of
points in X by more than a factor of L.

Lemma 29. Isoperimetric inequality on the sphere:

Let σn(A) denote the normalized area of A on the n-dimensional sphere Sn. That is, σn(A) :=
Area(A)
Area(Sn) .

Let ϵ > 0. Then for any subset A ⊂ Sn, given the area σn(A), the spherical caps minimize the
volume of the ϵ-neighborhood of A.

Suppose σn(·) is the normalized volume measure on the sphere Sn(1), then for any closed subset
Ω ⊂ Sn(1), we take a metric ball BΩ of Sn(1) with σn(BΩ) = σn(Ω). Then we have

σn(Ur(Ω)) ≥ σn(Ur(BΩ))

where Ur(A) = {x ∈ X : d(x,A) < r}
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Intuitively, the lemma means that the spherical caps are the most efficient way to cover the sphere.

Here, the efficiency is measured by the epsilon-neighborhood of the boundary of the spherical cap.

To prove the lemma, we need to have a good understanding of the Riemannian geometry of the
sphere. For now, let’s just take the lemma for granted.

1.3.1 Levy’s concentration theorem

Theorem 30. Levy’s concentration theorem:

An arbitrary 1-Lipschitz function f : Sn → R concentrates near a single value a0 ∈ R as strongly
as the distance function does.

That is,

µ{x ∈ Sn : |f(x)− a0| ≥ ϵ} < κn(ϵ) ≤ 2 exp

(
−(n− 1)ϵ2

2

)
where

κn(ϵ) =

∫ π
2
ϵ cosn−1(t)dt∫ π
2
0 cosn−1(t)dt

a0 is the Levy mean of function f , that is, the level set f−1 : R → Sn divides the sphere into equal
halves, characterized by the following equality:

µ(f−1(−∞, a0]) ≥
1

2
and µ(f−1[a0,∞)) ≥ 1

2

We will prove the theorem via the Maxwell-Boltzmann distribution law. [Shi14]

Definition 31. Gaussian measure:

We denote the Gaussian measure on Rk as γk.

dγk(x) :=
1

√
2π

k
exp(−1

2
∥x∥2)dx

x ∈ Rk, ∥x∥2 =
∑k

i=1 x
2
i is the Euclidean norm, and dx is the Lebesgue measure on Rk.

Basically, you can consider the Gaussian measure as the normalized Lebesgue measure on Rk with
standard deviation 1.

It also has another name, the Projective limit theorem. [Ver18]

If X ∼ Unif(Sn(
√
n)), then for any fixed unit vector x we have ⟨X,x⟩ → N(0, 1) in distribution as

n→ ∞.

Lemma 32. Maxwell-Boltzmann distribution law:

For any natural number k,
d(πn,k)∗σ

n(x)

dx
→ dγk(x)

dx
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Figure 1.2: Maxwell-Boltzmann distribution law, image from [Ver18]

where (πn,k)∗σ
n is the push-forward measure of σn by πn,k.

In other words,

(πn,k)∗σ
n → γk weakly as n→ ∞

Proof. We denote the n-dimensional volume measure on Rk as volk.

Observe that π−1
n,k(x), x ∈ Rk is isometric to Sn−k(

√
n− ∥x∥2), that is, for any x ∈ Rk, π−1

n,k(x) is

a sphere with radius
√
n− ∥x∥2 (by the definition of πn,k).

So,

d(πn,k)∗σ
n(x)

dx
=

voln−k(π
−1
n,k(x))

volk(Sn(
√
n))

=
(n− ∥x∥2)

n−k
2∫

∥x∥≤
√
n(n− ∥x∥2)

n−k
2 dx

as n→ ∞.

Note that limn→∞(1− a
n)

n = e−a for any a > 0.

(n− ∥x∥2)
n−k
2 =

(
n(1− ∥x∥2

n )
)n−k

2 → n
n−k
2 exp(−∥x∥2

2 )

So

(n− ∥x∥2)
n−k
2∫

∥x∥≤
√
n(n− ∥x∥2)

n−k
2 dx

=
e−

∥x∥2
2∫

x∈Rk e
− ∥x∥2

2 dx

=
1

(2π)
k
2

e−
∥x∥2

2

=
dγk(x)

dx
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Now we can prove Levy’s concentration theorem, the proof is from [Shi14].

Proof. Let fn : Sn(
√
n) → R, n = 1, 2, . . ., be 1-Lipschitz functions.

Let x and x′ be two given real numbers and γ1(−∞, x] = σ∞[−∞, x′], suppose σ∞{x′} = 0, where
{σi} is a sequence of Borel probability measures on R.

We want to show that, for all non-negative real numbers ϵ1 and ϵ2.

σ∞[x′ − ϵ1, x
′ + ϵ2] ≥ γ1[x− ϵ1, x+ ϵ2]

Consider the two spherical cap Ω+ := {fni ≥ x′} and Ω− := {fni ≤ x}. Note that Ω+ ∪ Ω− =
Sni(

√
ni).

It is sufficient to show that,

Uϵ1(Ω+) ∪ Uϵ2(Ω−) ⊂ {x′ − ϵ1 ≤ fni ≤ x′ + ϵ2}

By 1-Lipschitz continuity of fni , we have for all ζ ∈ Uϵ1(Ω+), there is a point ξ ∈ Ω+ such that
d(ζ, ξ) ≤ ϵ1. So Uϵ1(Ω+) ⊂ {fni ≥ x′ − ϵ1}. With the same argument, we have Uϵ2(Ω−) ⊂ {fni ≤
x+ ϵ2}.

So the push-forward measure of (fni)∗σ
ni of [x′ − ϵ1, x

′ + ϵ2] is

(fni)∗σ
ni [x′ − ϵ1, x

′ + ϵ2] = σni(x′ − ϵ1 ≤ fni ≤ x′ + ϵ2)

≥ σni(Uϵ1(Ω+) ∩ Uϵ2(Ω−))

= σni(Uϵ1(Ω+)) + σni(Uϵ2(Ω−))− 1

By the lemma 29, we have

σni(Uϵ1(Ω+)) ≥ σni(Uϵ1(BΩ+)) and σni(Uϵ2(Ω−)) ≥ σni(Uϵ2(BΩ−))

By the lemma 32, we have

σni(Uϵ1(Ω+)) + σni(Uϵ2(Ω−)) → γ1[x′ − ϵ1, x
′ + ϵ2] + γ1[x− ϵ1, x+ ϵ2]

Therefore,

σ∞[x′ − ϵ1, x
′ + ϵ2] ≥ lim inf

i→∞
(fni)∗σ

ni [x′ − ϵ1, x
′ + ϵ2]

≥ γ1[x′ − ϵ1,∞) ∩ γ1(−∞, x+ ϵ2]− 1

= γ1[x− ϵ1, x+ ϵ2]
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The full proof of Levy’s concentration theorem requires more digestion for cases where σ∞ ̸= δ±∞
but I don’t have enough time to do so. This section may be filled in the next semester.

1.4 The application of the concentration of measure phenomenon
in non-commutative probability theory

In quantum communication, we can pass classical bits by sending quantum states. However, by
the indistinguishability (Proposition 27) of quantum states, we cannot send an infinite number of
classical bits over a single qubit. There exists a bound for zero-error classical communication rate
over a quantum channel.

Theorem 33. Holevo bound:

The maximal amount of classical information that can be transmitted by a quantum system is
given by the Holevo bound. log2(d) is the maximum amount of classical information that can be
transmitted by a quantum system with d levels (that is, basically, the number of qubits).

The proof of the Holevo bound can be found in [NC10]. In current state of the project, this theorem
is not heavily used so we will not make annotated proof here.

1.4.1 Quantum communication

To surpass the Holevo bound, we need to use the entanglement of quantum states.

Definition 34. Bell state:

The Bell states are the following four states:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

These are a basis of the 2-qubit Hilbert space.

1.4.2 Superdense coding and entanglement

The description of the superdense coding can be found in [GMS15] and [Hay10].

Suppose A and B share a Bell state (or other maximally entangled state) |Φ+⟩ = 1√
2
(|00⟩+ |11⟩),

where A holds the first part and B holds the second part.

A wishes to send 2 classical bits to B.

A performs one of four Pauli unitaries (some fancy quantum gates named X, Y, Z, I) on the
combined state of entangled qubits ⊗ one qubit. Then A sends the resulting one qubit to B.

This operation extends the initial one entangled qubit to a system of one of four orthogonal Bell
states.
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B performs a measurement on the combined state of the one qubit and the entangled qubits he
holds.

B decodes the result and obtains the 2 classical bits sent by A.

Figure 1.3: Superdense coding, image from [Hay10]

Note that superdense coding is a way to send 2 classical bits of information by sending 1 qubit
with 1 entangled qubit. The role of the entangled qubit is to help them to distinguish the
4 possible states of the total 3 qubits system where 2 of them (the pair of entangled qubits) are
mathematically the same.

Additionally, no information can be gained by measuring a pair of entangled qubits. To send
information from A to B, we need to physically send the qubits from A to B. That means, we
cannot send information faster than the speed of light.

1.4.3 Hayden’s concentration of measure phenomenon

The application of the concentration of measure phenomenon in the superdense coding can be
realized in random sampling the entangled qubits [Hay10]:

It is a theorem connecting the following mathematical structure:

CP dAdB−1P(A⊗B)

SA [0,∞) ⊂ R

TrB
f

H(ψA)

Figure 1.4: Mathematical structure for Hayden’s concentration of measure phenomenon

• The red arrow is the concentration of measure effect. f = H(TrB(ψ)).
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• SA denotes the mixed states on A.

To prove the concentration of measure phenomenon, we need to analyze the following elements
involved in figure 1.4:

First, we need to define what is a random state in a bipartite system. In fact, for pure states, there
is a unique uniform distribution under Haar measure that is unitarily invariant.

U(n) is the group of all n× n unitary matrices over C,

U(n) = {A ∈ Cn×n : A∗A = AA∗ = In}

The uniqueness of such measurement came from the lemma below [Mec]

Lemma 35. Let (U(n), ∥ · ∥, µ) be a metric measure space where ∥ · ∥ is the Hilbert-Schmidt norm
and µ is the measure function.

The Haar measure on U(n) is the unique probability measure that is invariant under the action of
U(n) on itself.

That is, fixing B ∈ U(n), ∀A ∈ U(n), µ(A ·B) = µ(B ·A) = µ(B).

The Haar measure is the unique probability measure that is invariant under the action of U(n) on
itself.

The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For
this research topic, we will not prove it.

A random pure state φ is any random variable distributed according to the unitarily invariant
probability measure on the pure states P(A) of the system A, denoted by φ ∈R P(A).

It is trivial that for the space of pure state, we can easily apply the Haar measure as the unitarily
invariant probability measure since the space of pure state is Sn for some n. However, for the case
of mixed states, that is a bit complicated and we need to use partial tracing to defined the rank-s
random states.

Definition 36. Rank-s random state.

For a system A and an integer s ≥ 1, consider the distribution onn the mixed states S(A) of A
induced by the partial trace over the second factor form the uniform distribution on pure states of
A ⊗ Cs. Any random variable ρ distributed as such will be called a rank-s random states; denoted
as ρ ∈R Ss(A). And P(A) = S1(A).

Due to time constrains of the projects, the following lemma is demonstrated but not investigated
thoroughly through the research:

Lemma 37. Page’s lemma for expected entropy of mixed states

Choose a random pure state σ = |ψ⟩⟨ψ| from A′ ⊗A.

The expected value of the entropy of entanglement is known and satisfies a concentration inequality
known as Page’s formula [Pag; San95; BŻ17][15.72]. The detailed proof is not fully explored in this
project and is intended to be done in the next semester.

27



E[H(ψA)] ≥ log2(dA)−
1

2 ln(2)

dA
dB

It basically provides a lower bound for the expected entropy of entanglement. Experimentally, we
can have the following result (see Figure 1.5):

Figure 1.5: Entropy vs dimension

Then we have bound for Lipschitz constant η of the map H(φA)

Lemma 38. The Lipschitz constant η of S(φA) is upper bounded by
√
8 log2(dA) for dA ≥ 3.

From Levy’s lemma, we have

If we define β = 1
ln(2)

dA
dB

, then we have

Pr[H(ψA) < log2(dA)− α− β] ≤ exp

(
− 1

8π2 ln(2)

(dAdB − 1)α2

(log2(dA))
2

)
where dB ≥ dA ≥ 3 [HLW06].

Experimentally, we can have the following result:

As the dimension of the Hilbert space increases, the chance of getting an almost maximally entan-
gled state increases (see Figure 1.6).

In Hayden’s work, the result is also extended to the multiparty case [Hay10], and the result is still
under research and I will show the result in the final report if I have enough time.
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Figure 1.6: Entropy vs dA

29



30



Chapter 2

Levy’s family and observable
diameters

In this section, we will explore how the results from Hayden’s concentration of measure theorem can
be understood in terms of observable diameters from Gromov’s perspective and what properties it
reveals for entropy functions.

2.1 Observable diameters
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Chapter 3

Seigel-Bargmann Space

In this chapter, we will collect ideas and other perspective we have understanding the concentration
of measure phenomenon. Especially with symmetric product of CP 1 and see how it relates to
Riemman surfaces and Seigel-Bargmann spaces.

CPn

Cn+1

Pn

Symn(CP 1)

z ∼ λz w(z) =
∑n

i=0 Ziz
i

w(z) ∼ w(λz)

root of w(z)

Figure 3.1: Majorana stellar representation

Basically, there is a bijection between the complex projective space CPn and the set of roots of a
polynomial of degree n.

We can use a symmetric group of permutations of n complex numbers (or S2) to represent the
CPn, that is, CPn = S2 × S2 × · · · × S2/Sn.

One might be interested in the random sampling over the Symn(CP 1) and the concentration of
measure phenomenon on that.

3.1 Majorana stellar representation of the quantum state

3.2 Space of complex valued functions and pure states
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