Chapter 1

Concentration of Measure And
Quantum Entanglement

Non-commutative probability theory is a branch of generalized probability theory that studies the
probability of events in non-commutative algebras (e.g. the algebra of observables in quantum
mechanics). In the 20th century, non-commutative probability theory has been applied to the
study of quantum mechanics as the classical probability theory is not enough to describe quantum
mechanics [KM].

Recently, the concentration of measure phenomenon has been applied to the study of non-commutative
probability theory. Basically, the non-trivial observation, citing from Gromov’s work [Gro81], states
that an arbitrary 1-Lipschitz function f : S™ — R concentrates near a single value ag € R as strongly
as the distance function does. That is,

plz € 8™ | f(z) — aol = €} < knle) < 2exp (‘

is applied to computing the probability that, given a bipartite system A ® B, assume dim(B) >
dim(A) > 3, as the dimension of the smaller system A increases, with very high probability, a
random pure state o = |¢) (1| selected from A ® B is almost as good as the maximally entangled
state.

Mathematically, that is:
Let ¢ € P(A® B) be a random pure state on A ® B.

If we define g = ﬁ%’ then we have

H 1 (dadp —1)a?
Pr[H (4) <logy(da) — o — f] <exp <_87T2 In(2) ((ﬁ)gi(dA)))g >
where dp > d4 > 3 [HLWOG].

In this report, we will show the process of my exploration of the concentration of measure phe-
nomenon in the context of non-commutative probability theory. We assume the reader is an un-
dergraduate student in mathematics and is familiar with the basic concepts of probability theory,
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FIG. 1

Figure 1.1: The light polarization experiment, image from [KM]|

measure theory, linear algebra, and some basic skills of mathematical analysis. To make the report
more self-contained, we will add detailed annotated proofs that I understand and references for the
original sources.

1.1 Motivation

First, we introduce a motivation for introducing non-commutative probability theory to the study
of quantum mechanics. This section is mainly based on the book [KM].

1.1.1 Light polarization and the violation of Bell’s inequality

The light which comes through a polarizer is polarized in a certain direction. If we fix the first
filter and rotate the second filter, we will observe the intensity of the light will change.

The light intensity decreases with « (the angle between the two filters). The light should vanish
when o = /2.

However, for a system of 3 polarizing filters F}, F5, F3, having directions a1, ag, as, if we put them
on the optical bench in pairs, then we will have three random variables Py, P>, P;.
Theorem 1. Bell’s 8 variable inequality:

For any three random variables Py, Ps, P3 in a classical probability space, we have
Prob(P1 =1,P3= 0) < PI‘Ob(Pl =1,P = 0) + PI"Ob(PQ =1,P;= 0)
Proof. By the law of total probability (the event that the photon passes through the first filter but
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not the third filter is the union of the event that the photon did not pass through the second filter
and the event that the photon passed the second filter and did not pass through the third filter),
we have

PI‘Ob(Pl = 1,P3 = 0) = PI‘Ob(Pl = 1,P2 = O,Pg = 0)
+ PI‘Ob(Pl =1,P=1,P;= 0)
< Prob(P1 =1,P = O) + PI‘Ob(PQ =1,P;= 0)
[

However, according to our experimental measurement, for any pair of polarizers F;, Fj;, by the
complement rule, we have

Prob(P; =1, P; = 0) = Prob(P; = 1) — Prob(P; = 1,P; = 1)
1

l\’)

= 5 sinz(ai — Oéj)

This leads to a contradiction if we apply the inequality to the experimental data.

1 1 1
3 sin(og — a3) < 3 sin?(og — an) + 5 sin?(ag — az)

If oy = 0,0 = §, 3 = %, then

1 1 1

3 sinz(—g) < isin2(—%) t3 sinz(% - g)
5_1.1
8§ 8 8
3 1
g
8§ 4

Other revised experiments (e.g., Aspect’s experiment, calcium entangled photon experiment) are
also conducted and the inequality is still violated.

1.1.2 The true model of light polarization
The full description of the light polarization is given below:

State of polarization of a photon: ¥ = «|0) 4+ 8|1), where |0) and |1) are the two orthogonal
polarization states in C2.

Polarization filter (generalized 0,1 valued random variable): orthogonal projection P, on C? corre-
sponding to the direction « (operator satisfies P = P, = P2).

The matrix representation of P, is given by

P < cos?2(a)  cos(a )Q?m(a))

cos(a) sin(«) sin” ()
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Probability of a photon passing through the filter P, is given by (P,,); this is cos?(a) if we set
¥ = 0).

Since the probability of a photon passing through the three filters is not commutative, it is impos-
sible to discuss Prob(P; = 1, P3 = 0) in the classical setting.

This introduces a new model in mathematics explaining quantum mechanics: the non-commutative
probability theory.

1.2 Non-commutative probability theory

The non-commutative probability theory is a branch of generalized probability theory that studies
the probability of events in non-commutative algebras.

There are several main components of the generalized probability theory; let’s see how we can
formulate them, comparing with the classical probability theory.

First, we define the Hilbert space in case one did not make the step from the linear algebra courses
like me.
Definition 2. Hilbert space:

A Hilbert space is a complete inner product space.

That is, a vector space equipped with an inner product that is complete (every Cauchy sequence
converges to a limit).

To introduce an example of Hilbert space we use when studying quantum mechanics, we need to
introduce a common inner product used in C™.
Definition 3. Hermitian inner product:

On C", the Hermitian inner product is defined by

n
<U, U> = ZUZUZ
i=1

Proposition 4. The Hermitian inner product on the complex vector space C* makes it a Hilbert
space.

Proof. We first verify that the Hermitian inner product

n
<U, U) = Z'LTZ'UZ
=1

on C" satisfies the axioms of an inner product:

1. Conjugate symmetry: For all u,v € C",

n n
(u,0) = > w0 = > s = Tor )
=1 i
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2. Linearity: For any u,v,w € C™ and scalars a,b € C, we have

(u, av + bw) = Zuﬁ(avi + bw;) = a(u, v) + b{u, w).
i=1

3. Positive definiteness: For every u = (u1,ug, -+ ,uy) € C", let u; = a; + bji, where
aj, bj € R.

n

(u) = wuy =Y (af +b7) >0,
j=1

i=1
with equality if and only if v = 0.
Therefore, the Hermitian inner product is an inner product.

Next, we show that C" is complete with respect to the norm induced by this inner product:

[ull = v/ (u, u).

Since C" is finite-dimensional, every Cauchy sequence (with respect to any norm) converges in
C™. This is a standard result in finite-dimensional normed spaces, which implies that C” is indeed
complete.

Therefore, since the Hermitian inner product fulfills the inner product axioms and C™ is complete,
the complex vector space C" with the Hermitian inner product is a Hilbert space. O

Another classical example of Hilbert space is L(Q, F, P), where (Q,F, P) is a measure space (2 is
a set, F is a o-algebra on 2, and P is a measure on F). The L? space is the space of all square
integrable, complex-valued measurable functions on €.

The square integrable functions are the functions f : Q — C such that

[1#)PiPw) < o
Q

with inner product defined by
()= [ Flg)dP)

Proposition 5. L?(Q,F, P) is a Hilbert space.

Proof. We check the two conditions of the Hilbert space:

e Completeness: Let (f,) be a Cauchy sequence in L?(Q2, F, P). Then for any € > 0, there exists
an N such that for all m,n > N, we have

/Q @) — Fo() PAP(w) < &

This means that (f,) is a Cauchy sequence in the norm of L?(2,F, P).
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e Inner product: The inner product is defined by
()= [ Flgw)dP)

This is a well-defined inner product on L?(2,F, P). We can check the properties of the inner
product:
— Linearity:
(af +bg, h) = al(f,h) + blg,h)

— Conjugate symmetry:

(fr9) =19, 1)
— Positive definiteness:
(f;f)=0
O
Let 3 be a Hilbert space. H consists of complex-valued functions on a finite set Q = {1,2,--- ;n},
and the functions (e, eg,- - ,e,) form an orthonormal basis of H. (We use Dirac notation |k) to

denote the basis vector ey [Par92].)
The detailed definition of the non-commutative probability space is given below:

As an analog to the classical probability space (2, F, ), which consists of a sample space {2 and
a probability measure p on the state space F, the non-commutative probability space (H, P, p)
consists of a Hilbert space H and a state p on the space of all orthogonal projections P.
Definition 6. Non-commutative probability space:

A non-commutative probability space is a pair (B(H),P), where B(H) is the set of all bounded
linear operators on H.

A linear operator on H is bounded if for all u such that ||ul| < 1, we have ||Au|| < M for some
M > 0.

P is the set of all orthogonal projections on B(H).
The set P = {P € B(H) : P* = P = P2} is the set of all orthogonal projections on B(JH).

As a counterpart for the initial probability distribution in the classical probability theory, we need
to define the state in the non-commutative probability theory.
Definition 7. Non-commutative probability state:

A state on (B(H),P) is a map p : P — [0, 1] such that:
e p(O) =0, where O is the zero projection, and p(I) =1, where I is the identity projection.

o If P, Ps,..., P, are pairwise disjoint orthogonal projections, then p(Py + Py + -+ 4+ P,) =
> i1 p(5).



An example of a density operator can be given as follows:

If (|¢1), [12), -+, |¢n)) is an orthonormal basis of H consisting of eigenvectors of p, for the eigen-
values p1,p2,- -+, pn, then p; > 0 and 377, p; = 1.

We can write p as
n
p="> i) (]
j=1
(Under basis [1);), it is a diagonal matrix with p; on the diagonal.)

Then we need to introduce a theorem that ensures that every state on the space of all orthogonal
projections on H can be represented by a density operator.
Theorem 8. Gleason’s theorem (Theorem 1.1.15 in [Par05])

Let H be a Hilbert space over C or R of dimension n > 3. Let u be a state on the space P of
projections on H. Then there exists a unique density operator p such that

u(P) = Tx(pP)
for all P € P. P is the space of all orthogonal projections on H.
This proof came from [Par05].

This theorem is a very important theorem in non-commutative probability theory; it states that
any state on the space of all orthogonal projections on H can be represented by a density operator.

The counterpart of the random variable in the non-commutative probability theory is called an
observable, which is a Hermitian operator on 3 (for all ¢, ¢ in the domain of A, we have (A, ¢) =
(1, A¢). This kind of operator ensures that our outcome interpreted as probability is a real number).
Definition 9. Observable:

Let B(R) be the set of all Borel sets on R.
A random variable on the Hilbert space H is a projection-valued map (measure) P : B(R) — P.
With the following properties:

e P(0) = O (the zero projection)

e P(R) =1 (the identity projection)

e For any sequence Ay, Ag, -+, A, € B(R), the following holds:

- P(U?:lAi) = V?:1P(Ai)

P(Mizy Ai) = NiZy P(Ai)
P(A°) =1—- P(A)

— If A; are mutually disjoint (that is P(A;)P(A;) = P(A;)P(A;) = O fori # j), then
P(Uj—1 4j) = 2251 P(4))
Definition 10. Probability of a random variable:

For a system prepared in state p, the probability that the random variable given by the projection-
valued measure P is in the Borel set A is Tr(pP(A)).
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When operators commute, we recover classical probability measures.
Definition 11. Definition of measurement:

A measurement (observation) of a system prepared in a given state produces an outcome x, T is
a physical event that is a subset of the set of all possible outcomes. For each x, we associate a
measurement operator M, on JH.

Given the initial state (pure state, unit vector) u, the probability of measurement outcome x is given
by:
2
p(z) = || Myul|

Note that to make sense of this definition, the collection of measurement operators {My} must
satisfy the completeness requirement:

1= Zp(x) = Z | Mul* = Z<quv Myu) = (u, (Z M My)u)

reX reX rzeX zeX

So Y ex MyM, =1.
Proposition 12. Proposition of indistinguishability:

Suppose that we have two systems u1,us € Hy, the two states are distinguishable if and only if they
are orthogonal.
Proof. Ways to distinguish the two states:

1. Set X = {O, 1,2} and M; = \ul)(u,], My=1—M; — M,

2. Then { My, M1, M} is a complete collection of measurement operators on K.

3. Suppose the prepared state is ui, then p(1) = ||[Myuy||? = ||u1]|? = 1, p(2) = || Mauy||?> = 0,
p(0) = [[Mous||* = 0.

If they are not orthogonal, then there is no choice of measurement operators to perfectly distinguish
the two states.

O]

Intuitively, if the two states are not orthogonal, then for any measurement (projection) there exists
non-zero probability of getting the same outcome for both states.

Here is Table summarizing the analog of classical probability theory and non-commutative
(quantum) probability theory [Fer|:

1.3 Concentration of measure phenomenon

Definition 13. n-Lipschitz function

Let (X,distx) and (Y, disty) be two metric spaces. A function f : X —'Y is said to be n-Lipschitz
if there exists a constant L € R such that

diSty(f($), f(y)) < LdiStX(xa y)
forallz,y € X. And n = ||f||Lip = infrer L.



Table 1.1: Analog of classical probability theory and non-commutative (quantum) probability the-

ory

Classical probability

Non-commutative probability

Sample space €2, cardinality || = n, example: Q@ = {0,1}

Complex Hilbert space H, dimension dim H = n, example: H = c?

Common algebra of C valued functions

Algebra of bounded operators B(H)

f + f complex conjugation

P+ P* adjoint

Events: indicator functions of sets

Projections: space of orthogonal projections P C B(H)

functions f such that f2 = f=7F

orthogonal projections P such that P* = P = p2

R-valued functions f = f

self-adjoint operators A = A*

X - X 1
Hf_l({k}) is the indicator function of the set f~ " ({\})

P(X) is the orthogonal projection to eigenspace

f =2 erange($) Ap=1¢4ap

A=y cep(a) MPY)

Probability measure p on Q

Density operator p on H

Delta measure d,

Pure state p = [¢) (9|

u is non-negative measure and > 1 ; p({i}) =1

p is positive semi-definite and Tr(p) =1

Expected value of random variable f is E, (f) = Y72y f(i)u({i})

Expected value of operator A is E,(A) = Tr(pA)

Variance of random variable f is Var, (f) = Y7, (f(i) — Ep(f))zu({i})

Variance of operator A is Var,(A) = Tr(pAZ) — Tr(pA)>

Covariance of random variables f and g is Cov“(f,g) =

Eu(£))(9() — En(g))p{i})

i=1(f() —

Covariance of operators A and B is Cov,(A,B) =
Tr(pA) Tr(pB)

Tr(pA o B) —

Composite system is given by Cartesian product of the sample spaces
Q1 X Qo

Composite system is given by tensor product of the Hilbert spaces H1 @z

Product measure g3 X pg on 21 X Q9

Tensor product of space p; ® pa on H; ® Hg

Marginal distribution 7, v

Partial trace Tra(p)

That basically means that the function f should not

points in X by more than a factor of L.

Lemma 14. Isoperimetric inequality on the sphere:

change the distance between any two pairs of

Let 0,(A) denote the normalized area of A on the n-dimensional sphere S™. That is, 0,(A) =

Area(A)
Area(S™) "

Let € > 0. Then for any subset A C S™, given the area 0,(A), the spherical caps minimize the

volume of the e-neighborhood of A.

Suppose o™ (+) is the normalized volume measure on the sphere S™(1), then for any closed subset

Q C S™(1), we take a metric ball B of S™(1) with c"(Bgq) = o™ ().

Then we have

a"(Ur(Q)) = o™ (Ur(Bq))

where U,(A) = {x € X : d(z,A) < r}

Intuitively, the lemma means that the spherical caps are the most efficient way to cover the sphere.

Here, the efficiency is measured by the epsilon-neighborhood of the boundary of the spherical cap.

To prove the lemma, we need to have a good understanding of the Riemannian geometry of the
sphere. For now, let’s just take the lemma for granted.

1.3.1 Levy’s concentration theorem

Theorem 15. Levy’s concentration theorem:




An arbitrary 1-Lipschitz function f : S™ — R concentrates near a single value ag € R as strongly
as the distance function does.

That 1is,
(n— 1)62>

ulez € 5™ | f(z) — ao] > €} < rnle) < 2exp (— '

where i
2 cos™L(t)dt
pale) = Je OOt
Jo? cosn—L(t)dt

ag is the Levy mean of function f, that is, the level set f~1 : R — S™ divides the sphere into equal
halves, characterized by the following equality:

N | =

and p(f g, 0)) >

N |

/L(f_l(—OO, (10]) >

We will prove the theorem via the Maxwell-Boltzmann distribution law. [Shil4]
Definition 16. Gaussian measure:

We denote the Gaussian measure on RF as ~*.

1
v (z) = exp(—[|z|*)dz

1
k
s
reRF |z|? = Z?:l x? is the Euclidean norm, and dx is the Lebesgue measure on R¥.

Basically, you can consider the Gaussian measure as the normalized Lebesgue measure on R¥ with
standard deviation 1.

It also has another name, the Projective limit theorem. [Verl8]

If X ~ Unif(S™(y/n)), then for any fixed unit vector x we have (X, z) — N(0,1) in distribution as
n — 0.

s

Figure 3.9 The projective central limit theorem: the projection of the
uniform distribution on the sphere of radius /n onto a line converges to the
normal distribution N(0,1) as n — occ.

Figure 1.2: Maxwell-Boltzmann distribution law, image from [Verl§]
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Lemma 17. Mazwell-Boltzmann distribution law:

For any natural number k,
A(mnp)-0"(2) | dr*(a)
dx dx

where (T, 1)x0™ is the push-forward measure of o™ by mp, .

In other words,
(Tnp)s0™ — Y* weakly as n — oo

Proof. We denote the n-dimensional volume measure on R¥ as voly,.

Observe that 73 (z),z € R¥ is isometric to S *(y/n — ||z[|2), that is, for any = € R,

a sphere with radius \/n — ||z]|? (by the definition of 7, ).

So,
d(mpp)s0™ ()  VOln g (m, i (2))
dx ~ vole(S" (V)
B et 1 0
Siateya(n = 1212)°" dx
as n — oQ.

Note that limy, o0 (1 — 2)" = e~ for any a > 0.

n

n—k B
(n— 227" = (n(1 = 1E5)) ™ — 07 exp(-155)
So |
(n—llz|2) = %
2t de e
f||g:||§\/ﬁ(n - ||fUH2) 2 dw fxeRk e” 2 dx
1 =)
= e 2

Now we can prove Levy’s concentration theorem, the proof is from [Shil4].

Proof. Let f, : S™(v/n) =R, n=1,2,..., be 1-Lipschitz functions.

-1
k

(x) is

Let z and 2’ be two given real numbers and ! (—o0, 2] = 7o [—00, 2'], suppose oo, {7'} = 0, where

{o;} is a sequence of Borel probability measures on R.

We want to show that, for all non-negative real numbers €; and es.

ool —€1,2" + €] > 71[55 — €1,% + €3]
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Consider the two spherical cap Q4 = {fn, > 2’} and Q_ = {f,, < z}. Note that Q4 UQ_ =
S (/7).

It is sufficient to show that,

U€1(Q+) U U€2(Q—) - {.%'/ —€ < fnz < x4 62}

By 1-Lipschitz continuity of f,,, we have for all ¢ € U, (Q24), there is a point £ € Q4 such that
d(¢, &) < e1. So U, (Q4) C {fn, > 2’ — e1}. With the same argument, we have U, (Q_) C {fn, <
x+ e}

So the push-forward measure of (f,,).0™ of [2/ — €1, 2’ + €] is

(fni)so™M (2 —€1,2" + €3] = 0™ (2’ — €1 < fn, <2’ +€2)
> 0" (Ugy (24) N U, (Q2-))
Uni(Uq <Q+>) + Uni(UEQ(Q_)) -1

By the lemma [14], we have

0" (Uet (1)) 2 0™ (Uey (B, ) and 0™ (Uey(2-)) 2> 0™ (Uey(Ba )

By the lemma [17], we have

0" (U, (Q4)) + 0™ (Uey (Q-)) = 7' = e1,2" + &2] + 7' [z — 1,2+ 2]

Therefore,

Ooolr’ — €1,2" + €] > iminf(fp,) 0™ 2" — €1,2" + €]
1—00

> yHa' —e1,00) Nyl (—o0,z + €] — 1

:71[$—61,$+62]
O

The full proof of Levy’s concentration theorem requires more digestion for cases where G, 7 0400
but I don’t have enough time to do so. This section may be filled in the next semester.

1.4 The application of the concentration of measure phenomenon
in non-commutative probability theory

In quantum communication, we can pass classical bits by sending quantum states. However, by

the indistinguishability (Proposition of quantum states, we cannot send an infinite number of

classical bits over a single qubit. There exists a bound for zero-error classical communication rate
over a quantum channel.
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Theorem 18. Holevo bound:

The maximal amount of classical information that can be transmitted by a quantum system is
given by the Holevo bound. logy(d) is the maximum amount of classical information that can be
transmitted by a quantum system with d levels (that is, basically, the number of qubits).

The proof of the Holevo bound can be found in [NC10|. In current state of the project, this theorem
is not heavily used so we will not make annotated proof here.
1.4.1 Quantum communication

To surpass the Holevo bound, we need to use the entanglement of quantum states.
Definition 19. Bell state:

The Bell states are the following four states:

|27) = 7(I00>+!11>) @) = (|00> [11))

g

1 _
E(IOD +10)), [¥7) =

These are a basis of the 2-qubit Hilbert space.

o) = 5(101) — [10))

SJ- Bl

1.4.2 Superdense coding and entanglement
The description of the superdense coding can be found in |[GMS15] and [Hay10].

Suppose A and B share a Bell state (or other maximally entangled state) |®) = (\00> + [11)),

where A holds the first part and B holds the second part.

L
V2

A wishes to send 2 classical bits to B.

A performs one of four Pauli unitaries (some fancy quantum gates named X, Y, Z, I) on the
combined state of entangled qubits ® one qubit. Then A sends the resulting one qubit to B.

This operation extends the initial one entangled qubit to a system of one of four orthogonal Bell
states.

B performs a measurement on the combined state of the one qubit and the entangled qubits he
holds.

B decodes the result and obtains the 2 classical bits sent by A.

Note that superdense coding is a way to send 2 classical bits of information by sending 1 qubit
with 1 entangled qubit. The role of the entangled qubit is to help them to distinguish the
4 possible states of the total 3 qubits system where 2 of them (the pair of entangled qubits) are
mathematically the same.

Additionally, no information can be gained by measuring a pair of entangled qubits. To send
information from A to B, we need to physically send the qubits from A to B. That means, we
cannot send information faster than the speed of light.
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Figure 1.3: Superdense coding, image from [Hay10)]

1.4.3 Hayden’s concentration of measure phenomenon

The application of the concentration of measure phenomenon in the superdense coding can be
realized in random sampling the entangled qubits [Hay10]:

It is a theorem connecting the following mathematical structure:

P(A® B) «—— Cpdads—1

Trp

H(3a)

4 — [0,00) CR

Figure 1.4: Mathematical structure for Hayden’s concentration of measure phenomenon

e The red arrow is the concentration of measure effect. f = H(Trp(v)).
e S, denotes the mixed states on A.

To prove the concentration of measure phenomenon, we need to analyze the following elements
involved in figure

First, we need to define what is a random state in a bipartite system. In fact, for pure states, there
is a unique uniform distribution under Haar measure that is unitarily invariant.

U(n) is the group of all n x n unitary matrices over C,

Un)={AecC"": A"A=AA*"=1,}
The uniqueness of such measurement came from the lemma below [Mec]
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Lemma 20. Let (U(n),||- ||, 1) be a metric measure space where || - || is the Hilbert-Schmidt norm
and p is the measure function.

The Haar measure on U(n) is the unique probability measure that is invariant under the action of

U(n) on itself.
That is, fiting B € U(n), VA€ U(n), p(A-B) = u(B - A) = p(B).

The Haar measure is the unique probability measure that is invariant under the action of U(n) on
itself.

The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For
this research topic, we will not prove it.

A random pure state ¢ is any random variable distributed according to the unitarily invariant
probability measure on the pure states P(A) of the system A, denoted by ¢ €r P(A).

It is trivial that for the space of pure state, we can easily apply the Haar measure as the unitarily
invariant probability measure since the space of pure state is S™ for some n. However, for the case
of mixed states, that is a bit complicated and we need to use partial tracing to defined the rank-s
random states.

Definition 21. Rank-s random state.

For a system A and an integer s > 1, consider the distribution onn the mized states S(A) of A
induced by the partial trace over the second factor form the uniform distribution on pure states of

A® C*®. Any random variable p distributed as such will be called a rank-s random states; denoted
as p €g Ss(A). And P(A) = S1(4).

Due to time constrains of the projects, the following lemma is demonstrated but not investigated
thoroughly through the research:
Lemma 22. Page’s lemma for expected entropy of mized states

Choose a random pure state o = ) (| from A’ @ A.

The expected value of the entropy of entanglement is known and satisfies a concentration inequality
known as Page’s formula [Pag; \San95; \BZ17][15.72]. The detailed proof is not fully explored in this
project and s intended to be dome in the next semester.

1 da

E[H (1a)] > logy(da) — (@) dy

It basically provides a lower bound for the expected entropy of entanglement. Experimentally, we
can have the following result (see Figure [1.5]):

Then we have bound for Lipschitz constant 7 of the map H(p4)
Lemma 23. The Lipschitz constant n) of S(p4) is upper bounded by v/8logy(da) for da > 3.

From Levy’s lemma, we have

If we define g = ﬁ%’ then we have

1 (dadp — 1)a2>

Pr[H(14) <logy(da) — a = B] < exp <_87T2 In(2) (logy(da))?
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von Neumann Entropy vs. System Dimension, with Dimension of Subsystem A = 64

6 1 —— Expected Entropy
—-—- Theoretical Entropy | | _==7
——- Predicted Entropy ———

von Neumann Entropy (bits)

0 10 20 30 40 50 60
Dimension of Subsystem B

Figure 1.5: Entropy vs dimension

where dp > dy > 3 [HLWO06).
Experimentally, we can have the following result:

As the dimension of the Hilbert space increases, the chance of getting an almost maximally entan-
gled state increases (see Figure [1.6]).

In Hayden’s work, the result is also extended to the multiparty case [Hay10], and the result is still
under research and I will show the result in the final report if I have enough time.

1.4.4 Majorana stellar representation of the quantum state
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Probability

PriH(pa) < logz (da) —a — B] vs dj for fixed @ = 0 and dg= 32 with n=1000000

102 4

1073 4

,_.
o
|
-
L

107° 4

1075 4

da

Figure 1.6: Entropy vs d4
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