
Chapter 0: Brief definitions and basic
concepts

As the future version of me might forgot everything we have over the summer, as I did for now, I
will make a review again from the simple definition to recall the necessary information to tell you
why we are here and how we are going to proceed.

This section serve as reference for definitions, notations, and theorems that we will use later. This
section can be safely ignored if you are already familiar with the definitions and theorems.

But for the future self who might have no idea what I’m talking about, we will provided detailed
definitions to you to understand the concepts.

0.1 Complex vector spaces

The main vector space we are interested in is Cn; therefore, all the linear operators we defined are
from Cn to Cn.

Definition 1. We denote a vector in vector space as |ψ⟩ = (z1, . . . , zn) (might also be infinite
dimensional, and zi ∈ C).

Here ψ is just a label for the vector, and you don’t need to worry about it too much. This is also
called the ket, where the counterpart ⟨ψ| is called the bra, used to denote the vector dual to ψ;
such an element is a linear functional if you really want to know what that is.

Few additional notation will be introduced, in this document, we will follows the notation used in
mathematics literature [Axl23]

• ⟨ψ|φ⟩ is the inner product between two vectors, and ⟨ψ|A |φ⟩ is the inner product between
A |φ⟩ and ⟨ψ|, or equivalently A† ⟨ψ| and |φ⟩.

• Given a complex matrix A = Cn×n,

1. A is the complex conjugate of A.
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Example

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A =

1− i 2− i 3− i
4− i 5− i 6− i
7− i 8− i 9− i


2. A⊤ denotes the transpose of A.

Example

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A⊤ =

1 + i 4 + i 7 + i
2 + i 5 + i 8 + i
3 + i 6 + i 9 + i


3. A∗ = (A⊤) denotes the complex conjugate transpose, referred to as the adjoint, or

Hermitian conjugate of A.

Example

A =

1 + i 2 + i 3 + i
4 + i 5 + i 6 + i
7 + i 8 + i 9 + i

 , A∗ =

1− i 4− i 7− i
2− i 5− i 8− i
3− i 6− i 9− i


4. A is unitary if A∗A = AA∗ = I.

5. A is self-adjoint (hermitian in physics literature) if A∗ = A.

Motivation of Tensor product

Recall from the traditional notation of product space of two vector spaces V andW , that is, V ×W ,
is the set of all ordered pairs (|v⟩ , |w⟩) where |v⟩ ∈ V and |w⟩ ∈W .

The space has dimension dimV + dimW .

We want to define a vector space with the notation of multiplication of two vectors from different
vector spaces.

That is

(|v1⟩+ |v2⟩)⊗ |w⟩ = (|v1⟩ ⊗ |w⟩) + (|v2⟩ ⊗ |w⟩)

|v⟩ ⊗ (|w1⟩+ |w2⟩) = (|v⟩ ⊗ |w1⟩) + (|v⟩ ⊗ |w2⟩)

and enables scalar multiplication by

λ(|v⟩ ⊗ |w⟩) = (λ |v⟩)⊗ |w⟩ = |v⟩ ⊗ (λ |w⟩)

And we wish to build a way to associate the basis of V and W with the basis of V ⊗W . That
makes the tensor product a vector space with dimension dimV × dimW .
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Definition 2. Definition of linear functional

A linear functional is a linear map from V to F.

Note the difference between a linear functional and a linear map.

A generalized linear map is a function f : V →W satisfying the condition.

• f(|u⟩+ |v⟩) = f(|u⟩) + f(|v⟩)

• f(λ |v⟩) = λf(|v⟩)

Definition 3. A bilinear functional is a bilinear function β : V ×W → F satisfying the condition
that |v⟩ → β(|v⟩ , |w⟩) is a linear functional for all |w⟩ ∈ W and |w⟩ → β(|v⟩ , |w⟩) is a linear
functional for all |v⟩ ∈ V .

The vector space of all bilinear functionals is denoted by B(V,W ).

Definition 4. Let V,W be two vector spaces.

Let V ′ and W ′ be the dual spaces of V and W , respectively, that is V ′ = {ψ : V → F} and
W ′ = {ϕ :W → F}, ψ, ϕ are linear functionals.

The tensor product of vectors v ∈ V and w ∈ W is the bilinear functional defined by ∀(ψ, ϕ) ∈
V ′ ×W ′ given by the notation

(v ⊗ w)(ψ, ϕ) = ψ(v)ϕ(w)

The tensor product of two vector spaces V and W is the vector space B(V ′,W ′)

Notice that the basis of such vector space is the linear combination of the basis of V ′ and W ′, that
is, if {ei} is the basis of V ′ and {fj} is the basis of W ′, then {ei ⊗ fj} is the basis of B(V ′,W ′).

That is, every element of B(V ′,W ′) can be written as a linear combination of the basis.

Since {ei} and {fj} are bases of V ′ and W ′, respectively, then we can always find a set of linear
functionals {ϕi} and {ψj} such that ϕi(ej) = δij and ψj(fi) = δij.

Here δij =

{
1 if i = j

0 otherwise
is the Kronecker delta.

V ⊗W =


n∑

i=1

m∑
j=1

aijϕi(v)ψj(w) : ϕi ∈ V ′, ψj ∈W ′


Note that

∑n
i=1

∑m
j=1 aijϕi(v)ψj(w) is a bilinear functional that maps V ′ ×W ′ to F.

This enables basis-free construction of vector spaces with proper multiplication and scalar multi-
plication.
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Examples of tensor product for vectors

Let V = C2,W = C3, choose bases {|0⟩ , |1⟩} ⊂ V, {|0⟩ , |1⟩ , |2⟩} ⊂W .

v =

(
v1
v2

)
= v1 |0⟩+ v2 |1⟩ ∈ V,w =

w1

w2

w3

 = w1 |0⟩+ w2 |1⟩+ w3 |2⟩ ∈W

.
Then the tensor product v ⊗ w is given by

v ⊗ w =

(
v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

)
∈ C6

Examples of tensor product for vector spaces

Let V = C2,W = C3, choose bases {|0⟩ , |1⟩} ⊂ V, {|0⟩ , |1⟩ , |2⟩} ⊂W.
Then a basis of the tensor product is

{|00⟩ , |01⟩ , |02⟩ , |10⟩ , |11⟩ , |12⟩},

where |ij⟩ := |i⟩ ⊗ |j⟩.
An example element of V ⊗W is

|ψ⟩ = 2 |0⟩ ⊗ |1⟩+ (1 + i) |1⟩ ⊗ |0⟩ − i |1⟩ ⊗ |2⟩ .

With respect to the ordered basis

(|00⟩ , |01⟩ , |02⟩ , |10⟩ , |11⟩ , |12⟩),

this tensor corresponds to the coordinate vector

|ψ⟩ ←→



0
2
0

1 + i
0
−i

 ∈ C6.

Using the canonical identification
C2 ⊗ C3 ∼= C2×3,

where
|i⟩ ⊗ |j⟩ 7−→ Eij ,

the same tensor is represented by the matrix

|ψ⟩ ←→
(

0 2 0
1 + i 0 −i

)
.

Definition 5. The vector space defined by the tensor product is equipped with the unique inner
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product ⟨v ⊗ w, u⊗ x⟩V⊗W : V ⊗W × V ⊗W → F defined by

⟨v ⊗ w, u⊗ x⟩ = ⟨v, u⟩V ⟨w, x⟩W

In practice, we ignore the subscript of the vector space and just write ⟨v⊗w, u⊗ x⟩ = ⟨v, u⟩⟨w, x⟩.
Partial trace

Definition 6. Let T be a linear operator on H, (e1, e2, · · · , en) be a basis of H and (ϵ1, ϵ2, · · · , ϵn)
be a basis of dual space H∗. Then the trace of T is defined by

Tr(T ) =

n∑
i=1

ϵi(T (ei)) =

n∑
i=1

⟨ei, T (ei)⟩

This is equivalent to the sum of the diagonal elements of T .

Definition 7. Let T be a linear operator on H = A ⊗ B, where A and B are finite-dimensional
Hilbert spaces.

An operator T on H = A⊗B can be written as

T =

n∑
i=1

aiAi ⊗Bi

where Ai is a linear operator on A and Bi is a linear operator on B.

The B-partial trace of T (TrB(T ) : L(A⊗B)→ L(A)) is the linear operator on A defined by

TrB(T ) =

n∑
i=1

aiTr(Bi)Ai

Or we can define the map Lv : A→ A⊗B by

Lv(u) = u⊗ v

Note that ⟨u, L∗
v(u

′)⊗ v′⟩ = ⟨u, u′⟩⟨v, v′⟩ = ⟨u⊗ v, u′ ⊗ v′⟩ = ⟨Lv(u), u
′ ⊗ v′⟩.

Therefore, L∗
v

∑
j uj ⊗ vj =

∑
j⟨v, vj⟩uj .

Then the partial trace of T can also be defined by

Let {vj} be a set of orthonormal basis of B.

TrB(T ) =
∑
j

L∗
vj (T )Lvj
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Definition 8. Let T be a linear operator on H = A ⊗ B, where A and B are finite-dimensional
Hilbert spaces.

Let ρ be a state on B consisting of orthonormal basis {vj} and eigenvalue {λj}.

The partial trace of T with respect to ρ is the linear operator on A defined by

TrA(T ) =
∑
j

λjL
∗
vj (T )Lvj

This introduces a new model in mathematics explaining quantum mechanics: the non-commutative
probability theory.

0.2 Non-commutative probability theory

The non-commutative probability theory is a branch of generalized probability theory that studies
the probability of events in non-commutative algebras.

There are several main components of the generalized probability theory; let’s see how we can
formulate them, comparing with the classical probability theory.

First, we define the Hilbert space in case one did not make the step from the linear algebra courses
like me.

Definition 9. Hilbert space:

A Hilbert space is a complete inner product space.

That is, a vector space equipped with an inner product that is complete (every Cauchy sequence
converges to a limit).

Example

To introduce an example of Hilbert space we use when studying quantum mechanics, we need
to introduce a common inner product used in Cn.
Proposition 10. The Hermitian inner product on the complex vector space Cn makes it a
Hilbert space.

Proof. We first verify that the Hermitian inner product

⟨u, v⟩ =
n∑

i=1

uivi

on Cn satisfies the axioms of an inner product:
1. Conjugate symmetry: For all u, v ∈ Cn,

⟨u, v⟩ =
n∑

i=1

uivi =

n∑
i=1

viui = ⟨v, u⟩.
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2. Linearity: For any u, v, w ∈ Cn and scalars a, b ∈ C, we have

⟨u, av + bw⟩ =
n∑

i=1

ui(avi + bwi) = a⟨u, v⟩+ b⟨u,w⟩.

3. Positive definiteness: For every u = (u1, u2, · · · , un) ∈ Cn, let uj = aj + bji, where
aj , bj ∈ R.

⟨u, u⟩ =
n∑

j=1

ujuj =

n∑
i=1

(a2i + b2i ) ≥ 0,

with equality if and only if u = 0.
Therefore, the Hermitian inner product is an inner product.

Next, we show that Cn is complete with respect to the norm induced by this inner product:

∥u∥ =
√
⟨u, u⟩.

Since Cn is finite-dimensional, every Cauchy sequence (with respect to any norm) converges in
Cn. This is a standard result in finite-dimensional normed spaces, which implies that Cn is
indeed complete.
Therefore, since the Hermitian inner product fulfills the inner product axioms and Cn is complete,
the complex vector space Cn with the Hermitian inner product is a Hilbert space.

Another classical example of Hilbert space is L2(Ω,F, P ), where (Ω,F, P ) is a measure space (Ω is
a set, F is a σ-algebra on Ω, and P is a measure on F). The L2 space is the space of all function
on Ω that is

1. square integrable: square integrable functions are the functions f : Ω→ C such that∫
Ω
|f(ω)|2dP (ω) <∞

with inner product defined by

⟨f, g⟩ =
∫
Ω
f(ω)g(ω)dP (ω)

2. complex-valued: functions are complex-valued measurable. f = u+ vi is complex-valued if
u and v are real-valued measurable.

Example

Proposition 11. L2(Ω,F, P ) is a Hilbert space.

Proof. We check the two conditions of the Hilbert space:
• Completeness: Let (fn) be a Cauchy sequence in L2(Ω,F, P ). Then for any ϵ > 0, there
exists an N such that for all m,n ≥ N , we have∫

Ω
|fm(ω)− fn(ω)|2dP (ω) < ϵ2

This means that (fn) is a Cauchy sequence in the norm of L2(Ω,F, P ).
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• Inner product: The inner product is defined by

⟨f, g⟩ =
∫
Ω
f(ω)g(ω)dP (ω)

This is a well-defined inner product on L2(Ω,F, P ). We can check the properties of the
inner product:

– Linearity:
⟨af + bg, h⟩ = a⟨f, h⟩+ b⟨g, h⟩

– Conjugate symmetry:
⟨f, g⟩ = ⟨g, f⟩

– Positive definiteness:
⟨f, f⟩ ≥ 0

Let H be a Hilbert space. H consists of complex-valued functions on a finite set Ω = {1, 2, . . . , n},
and the functions (e1, e2, . . . , en) form an orthonormal basis of H. (We use Dirac notation |k⟩ to
denote the basis vector ek [Par92].)

As an analog to the classical probability space (Ω,F, µ), which consists of a sample space Ω and
a probability measure µ on the state space F, the non-commutative probability space (H,P, ρ)
consists of a Hilbert space H and a state ρ on the space of all orthogonal projections P.

The detailed definition of the non-commutative probability space is given below:

Definition 12. Non-commutative probability space:

A non-commutative probability space is a pair (B(H),P), where B(H) is the set of all bounded
linear operators on H.

A linear operator on H is bounded if for all u such that ∥u∥ ≤ 1, we have ∥Au∥ ≤ M for some
M > 0.

P is the set of all orthogonal projections on B(H).

The set P = {P ∈ B(H) : P ∗ = P = P 2} is the set of all orthogonal projections on B(H).

Recall from classical probability theory, we call the initial probability distribution for possible
outcomes in the classical probability theory as our state, simillarly, we need to define the state in
the non-commutative probability theory.

Definition 13. Non-commutative probability state:

Given a non-commutative probability space (B(H),P),

A state is a unit vector ⟨ψ| in the Hilbert space H, such that ⟨ψ| |ψ⟩ = 1.

Every state uniquely defines a map ρ : P → [0, 1], ρ(P ) = ⟨ψ|P |ψ⟩ (commonly named as density
operator) such that:

• ρ(O) = 0, where O is the zero projection, and ρ(I) = 1, where I is the identity projection.
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• If P1, P2, . . . , Pn are pairwise disjoint orthogonal projections, then ρ(P1 + P2 + · · · + Pn) =∑n
i=1 ρ(Pi).

Note that the pure states are the density operators that can be represented by a unit vector ⟨ψ| in
the Hilbert space H, whereas mixed states are the density operators that cannot be represented by
a unit vector in the Hilbert space H.

If (|ψ1⟩, |ψ2⟩, · · · , |ψn⟩) is an orthonormal basis of H consisting of eigenvectors of ρ, for the eigen-
values p1, p2, · · · , pn, then pj ≥ 0 and

∑n
j=1 pj = 1.

We can write ρ as

ρ =
n∑

j=1

pj |ψj⟩⟨ψj |

(Under basis |ψj⟩, it is a diagonal matrix with pj on the diagonal.)

The counterpart of the random variable in the non-commutative probability theory is called an
observable, which is a Hermitian operator on H (for all ψ, ϕ in the domain of A, we have ⟨Aψ, ϕ⟩ =
⟨ψ,Aϕ⟩. This kind of operator ensures that our outcome interpreted as probability is a real number).

Definition 14. Observable:

Let B(R) be the set of all Borel sets on R.

A random variable on the Hilbert space H is a projection-valued map (measure) P : B(R)→ P.

With the following properties:

• P (∅) = O (the zero projection)

• P (R) = I (the identity projection)

• For any sequence A1, A2, · · · , An ∈ B(R), the following holds:

– P (
⋃n

i=1Ai) =
∨n

i=1 P (Ai)

– P (
⋂n

i=1Ai) =
∧n

i=1 P (Ai)

– P (Ac) = I − P (A)

– If Aj are mutually disjoint (that is P (Ai)P (Aj) = P (Aj)P (Ai) = O for i ̸= j), then
P (

⋃n
j=1Aj) =

∑n
j=1 P (Aj)

Definition 15. Probability of a random variable:

For a system prepared in state ρ, the probability that the random variable given by the projection-
valued measure P is in the Borel set A is Tr(ρP (A)).

When operators commute, we recover classical probability measures.

Definition 16. Definition of measurement:

A measurement (observation) of a system prepared in a given state produces an outcome x, x is
a physical event that is a subset of the set of all possible outcomes. For each x, we associate a
measurement operator Mx on H.

9



Given the initial state (pure state, unit vector) u, the probability of measurement outcome x is given
by:

p(x) = ∥Mxu∥2

Note that to make sense of this definition, the collection of measurement operators {Mx} must
satisfy the completeness requirement:

1 =
∑
x∈X

p(x) =
∑
x∈X
∥Mxu∥2 =

∑
x∈X
⟨Mxu,Mxu⟩ = ⟨u, (

∑
x∈X

M∗
xMx)u⟩

So
∑

x∈X M∗
xMx = I.

Here is Table 1 summarizing the analog of classical probability theory and non-commutative (quan-
tum) probability theory [Fer]:

Table 1: Analog of classical probability theory and non-commutative (quantum) probability theory

Classical probability Non-commutative probability

Sample space Ω, cardinality |Ω| = n, example: Ω =
{0, 1}

Complex Hilbert space H, dimension dimH = n, ex-
ample: H = C2

Common algebra of C valued functions Algebra of bounded operators B(H)

f 7→ f̄ complex conjugation P 7→ P ∗ adjoint

Events: indicator functions of sets Projections: space of orthogonal projections P ⊆
B(H)

functions f such that f2 = f = f orthogonal projections P such that P ∗ = P = P 2

R-valued functions f = f self-adjoint operators A = A∗

If−1({λ}) is the indicator function of the set f−1({λ}) P (λ) is the orthogonal projection to eigenspace

f =
∑

λ∈Range(f) λIf−1({λ}) A =
∑

λ∈sp(A) λP (λ)

Probability measure µ on Ω Density operator ρ on H

Delta measure δω Pure state ρ = |ψ⟩⟨ψ|

µ is non-negative measure and
∑n

i=1 µ({i}) = 1 ρ is positive semi-definite and Tr(ρ) = 1

Expected value of random variable f is Eµ(f) =∑n
i=1 f(i)µ({i})

Expected value of operator A is Eρ(A) = Tr(ρA)

Variance of random variable f is Varµ(f) =∑n
i=1(f(i)− Eµ(f))

2µ({i})
Variance of operator A is Varρ(A) = Tr(ρA2) −
Tr(ρA)2

Covariance of random variables f and g is
Covµ(f, g) =

∑n
i=1(f(i)− Eµ(f))(g(i)− Eµ(g))µ({i})

Covariance of operators A and B is Covρ(A,B) =
Tr(ρA ◦B)− Tr(ρA) Tr(ρB)

Composite system is given by Cartesian product of the
sample spaces Ω1 × Ω2

Composite system is given by tensor product of the
Hilbert spaces H1 ⊗H2

Product measure µ1 × µ2 on Ω1 × Ω2 Tensor product of space ρ1 ⊗ ρ2 on H1 ⊗H2

Marginal distribution π∗v Partial trace Tr2(ρ)
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0.2.1 Quantum physics and terminologies

In this section, we will introduce some terminologies and theorems used in quantum physics that
are relevant to our study. Assuming no prior knowledge of quantum physics, we will provide brief
definitions and explanations for each term.

One might ask, what is the fundamental difference between a quantum system and a classical
system, and why can we not directly apply those theorems in classical computers to a quantum
computer? It turns out that quantum error-correcting codes are hard due to the following definitions
and features for quantum computing.

Definition 17. All quantum operations can be constructed by composing four kinds of transforma-
tions: (adapted from Chapter 10 of [BZ17])

1. Unitary operations. U(·) for any quantum state. It is possible to apply a non-unitary operation
for an open quantum system, but that is usually not the focus for quantum computing and
usually leads to non-recoverable loss of information that we wish to obtain.

2. Extend the system. Given a quantum state ρ ∈ HN , we can extend it to a larger quantum
system by ”entangle” (For this report, you don’t need to worry for how quantum entanglement
works) it with some new states σ ∈ HK (The space where the new state dwells is usually called
ancilla system) and get ρ′ = ρ⊗ σ ∈ HN ⊗K.

3. Partial trace. Given a quantum state ρ ∈ HN and some reference state σ ∈ HK , we can trace
out some subsystems and get a new state ρ′ ∈ HN−K .

4. Selective measurement. Given a quantum state, we measure it and get a classical bit; unlike
the classical case, the measurement is a probabilistic operation. (More specifically, this is
some projection to a reference state corresponding to a classical bit output. For this report,
you don’t need to worry about how such a result is obtained and how the reference state is
constructed.)

U(n) is the group of all n× n unitary matrices over C,

U(n) = {A ∈ Cn×n : A∗A = AA∗ = In}

The uniqueness of such measurement came from the lemma below [Mec]

Lemma 18. Let (U(n), ∥ · ∥, µ) be a metric measure space where ∥ · ∥ is the Hilbert-Schmidt norm
and µ is the measure function.

The Haar measure on U(n) is the unique probability measure that is invariant under the action of
U(n) on itself.

That is, fixing B ∈ U(n), ∀A ∈ U(n), µ(A ·B) = µ(B ·A) = µ(B).

The Haar measure is the unique probability measure that is invariant under the action of U(n) on
itself.

Definition 19. Pure state:
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A random pure state φ is any random variable distributed according to the unitarily invariant
probability measure on the pure states P(A) of the system A, denoted by φ ∈R P(A).

It is trivial that for the space of pure state, we can easily apply the Haar measure as the unitarily
invariant probability measure since the space of pure state is Sn for some n. However, for the case
of mixed states, that is a bit complicated and we need to use partial tracing to defined the rank-s
random states.

Definition 20. Rank-s random state.

For a system A and an integer s ≥ 1, consider the distribution onn the mixed states S(A) of A
induced by the partial trace over the second factor form the uniform distribution on pure states of
A ⊗ Cs. Any random variable ρ distributed as such will be called a rank-s random states; denoted
as ρ ∈R Ss(A). And P(A) = S1(A).

Proposition 21. Proposition of indistinguishability:

Suppose that we have two systems u1, u2 ∈ H1, the two states are distinguishable if and only if they
are orthogonal.

Proof. Ways to distinguish the two states:

1. Set X = {0, 1, 2} and Mi = |ui⟩⟨ui|, M0 = I −M1 −M2

2. Then {M0,M1,M2} is a complete collection of measurement operators on H.

3. Suppose the prepared state is u1, then p(1) = ∥M1u1∥2 = ∥u1∥2 = 1, p(2) = ∥M2u1∥2 = 0,
p(0) = ∥M0u1∥2 = 0.

If they are not orthogonal, then there is no choice of measurement operators to perfectly distinguish
the two states.

Intuitively, if the two states are not orthogonal, then for any measurement (projection) there exists
non-zero probability of getting the same outcome for both states.

0.2.2 Random quantum states

First, we need to define what is a random state in a bipartite system.
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