
Chapter 1

Concentration of Measure And
Quantum Entanglement

First, we will build the mathematical model describing the behavior of quantum system and why
they makes sense for physicists and meaningful for general publics.

1.1 Motivation

First, we introduce a motivation for introducing non-commutative probability theory to the study
of quantum mechanics. This section is mainly based on the book [KM].

1.1.1 Light polarization and the violation of Bell’s inequality

The light which comes through a polarizer is polarized in a certain direction. If we fix the first
filter and rotate the second filter, we will observe the intensity of the light will change.

The light intensity decreases with α (the angle between the two filters). The light should vanish
when α = π/2.

However, for a system of 3 polarizing filters F1, F2, F3, having directions α1, α2, α3, if we put them
on the optical bench in pairs, then we will have three random variables P1, P2, P3.

Theorem 1. Bell’s 3 variable inequality:

For any three random variables P1, P2, P3 in a classical probability space, we have

Prob(P1 = 1, P3 = 0) ≤ Prob(P1 = 1, P2 = 0) + Prob(P2 = 1, P3 = 0)

Proof. By the law of total probability there are only two possibility if we don’t observe any light
passing the filter pair Fi, Fj , it means the photon is either blocked by Fi or Fj , it means
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Figure 1.1: The light polarization experiment, image from [KM]

Prob(P1 = 1, P3 = 0) = Prob(P1 = 1, P2 = 0, P3 = 0)

+ Prob(P1 = 1, P2 = 1, P3 = 0)

≤ Prob(P1 = 1, P2 = 0) + Prob(P2 = 1, P3 = 0)

However, according to our experimental measurement, for any pair of polarizers Fi, Fj , by the
complement rule, we have

Prob(Pi = 1, Pj = 0) = Prob(Pi = 1)− Prob(Pi = 1, Pj = 1)

=
1

2
− 1

2
cos2(αi − αj)

=
1

2
sin2(αi − αj)

This leads to a contradiction if we apply the inequality to the experimental data.
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Other revised experiments (e.g., Aspect’s experiment, calcium entangled photon experiment) are
also conducted and the inequality is still violated.

1.1.2 The true model of light polarization

The full description of the light polarization is given below:

State of polarization of a photon: ψ = α|0⟩ + β|1⟩, where |0⟩ and |1⟩ are the two orthogonal
polarization states in C2.

Polarization filter (generalized 0,1 valued random variable): orthogonal projection Pα on C2 corre-
sponding to the direction α (operator satisfies P ∗

α = Pα = P 2
α).

The matrix representation of Pα is given by

Pα =

(
cos2(α) cos(α) sin(α)

cos(α) sin(α) sin2(α)

)
Probability of a photon passing through the filter Pα is given by ⟨Pαψ,ψ⟩; this is cos2(α) if we set
ψ = |0⟩.

Since the probability of a photon passing through the three filters is not commutative, it is impos-
sible to discuss Prob(P1 = 1, P3 = 0) in the classical setting.

We now show how the experimentally observed probability

1

2
sin2(αi − αj)

arises from the operator model.

Assume the incoming light is unpolarized. It is therefore described by the density matrix

ρ =
1

2
I.

Let Pαi and Pαj be the orthogonal projections corresponding to the two polarization filters with
angles αi and αj .

The probability that a photon passes the first filter Pαi is given by the Born rule:

Prob(Pi = 1) = tr(ρPαi) =
1

2
tr(Pαi) =

1

2

If the photon passes the first filter, the post-measurement state is given by the Lüders rule:

ρ 7−→ ρi =
PαiρPαi

tr(ρPαi)
= Pαi .

The probability that the photon then passes the second filter is
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Prob(Pj = 1 | Pi = 1) = tr(PαiPαj ) = cos2(αi − αj).

Hence, the probability that the photon passes Pαi and is then blocked by Pαj is

Prob(Pi = 1, Pj = 0) = Prob(Pi = 1)− Prob(Pi = 1, Pj = 1)

=
1

2
− 1

2
cos2(αi − αj)

=
1

2
sin2(αi − αj).

This agrees with the experimentally observed transmission probabilities, but it should be empha-
sized that this quantity corresponds to a sequential measurement rather than a joint probability in
the classical sense.

1.2 Concentration of measure phenomenon

Definition 2. η-Lipschitz function

Let (X,distX) and (Y,distY ) be two metric spaces. A function f : X → Y is said to be η-Lipschitz
if there exists a constant L ∈ R such that

distY (f(x), f(y)) ≤ LdistX(x, y)

for all x, y ∈ X. And η = ∥f∥Lip = infL∈R L.

That basically means that the function f should not change the distance between any two pairs of
points in X by more than a factor of L.

This is a stronger condition than continuity, every Lipschitz function is continuous, but not every
continuous function is Lipschitz.

Lemma 3. Isoperimetric inequality on the sphere:

Let σn(A) denote the normalized area of A on the n-dimensional sphere Sn. That is, σn(A) :=
Area(A)
Area(Sn) .

Let ϵ > 0. Then for any subset A ⊂ Sn, given the area σn(A), the spherical caps minimize the
volume of the ϵ-neighborhood of A.

Suppose σn(·) is the normalized volume measure on the sphere Sn(1), then for any closed subset
Ω ⊂ Sn(1), we take a metric ball BΩ of Sn(1) with σn(BΩ) = σn(Ω). Then we have

σn(Ur(Ω)) ≥ σn(Ur(BΩ))

where Ur(A) = {x ∈ X : d(x,A) < r}
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Intuitively, the lemma means that the spherical caps are the most efficient way to cover the sphere.

Here, the efficiency is measured by the epsilon-neighborhood of the boundary of the spherical cap.

To prove the lemma, we need to have a good understanding of the Riemannian geometry of the
sphere. For now, let’s just take the lemma for granted.

1.2.1 Levy’s concentration theorem

Theorem 4. Levy’s concentration theorem:

An arbitrary 1-Lipschitz function f : Sn → R concentrates near a single value a0 ∈ R as strongly
as the distance function does.

That is,

µ{x ∈ Sn : |f(x)− a0| ≥ ϵ} < κn(ϵ) ≤ 2 exp

(
−(n− 1)ϵ2

2

)
where

κn(ϵ) =

∫ π
2
ϵ cosn−1(t)dt∫ π
2
0 cosn−1(t)dt

a0 is the Levy mean of function f , that is, the level set f−1 : R → Sn divides the sphere into equal
halves, characterized by the following equality:

µ(f−1(−∞, a0]) ≥
1

2
and µ(f−1[a0,∞)) ≥ 1

2

We will prove the theorem via the Maxwell-Boltzmann distribution law. [Shi14]

Definition 5. Gaussian measure:

We denote the Gaussian measure on Rk as γk.

dγk(x) :=
1

√
2π

k
exp(−1

2
∥x∥2)dx

x ∈ Rk, ∥x∥2 =
∑k

i=1 x
2
i is the Euclidean norm, and dx is the Lebesgue measure on Rk.

Basically, you can consider the Gaussian measure as the normalized Lebesgue measure on Rk with
standard deviation 1.

It also has another name, the Projective limit theorem. [Ver18]

If X ∼ Unif(Sn(
√
n)), then for any fixed unit vector x we have ⟨X,x⟩ → N(0, 1) in distribution as

n→ ∞.

Lemma 6. Maxwell-Boltzmann distribution law:

For any natural number k,
d(πn,k)∗σ

n(x)

dx
→ dγk(x)

dx
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Figure 1.2: Maxwell-Boltzmann distribution law, image from [Ver18]

where (πn,k)∗σ
n is the push-forward measure of σn by πn,k.

In other words,

(πn,k)∗σ
n → γk weakly as n→ ∞

Proof. We denote the n-dimensional volume measure on Rk as volk.

Observe that π−1
n,k(x), x ∈ Rk is isometric to Sn−k(

√
n− ∥x∥2), that is, for any x ∈ Rk, π−1

n,k(x) is

a sphere with radius
√
n− ∥x∥2 (by the definition of πn,k).

So,

d(πn,k)∗σ
n(x)

dx
=

voln−k(π
−1
n,k(x))

volk(Sn(
√
n))

=
(n− ∥x∥2)

n−k
2∫

∥x∥≤
√
n(n− ∥x∥2)

n−k
2 dx

as n→ ∞.

Note that limn→∞(1− a
n)

n = e−a for any a > 0.

(n− ∥x∥2)
n−k
2 =

(
n(1− ∥x∥2

n )
)n−k

2 → n
n−k
2 exp(−∥x∥2

2 )

So

(n− ∥x∥2)
n−k
2∫

∥x∥≤
√
n(n− ∥x∥2)

n−k
2 dx

=
e−

∥x∥2
2∫

x∈Rk e
− ∥x∥2

2 dx

=
1

(2π)
k
2

e−
∥x∥2

2

=
dγk(x)

dx
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Now we can prove Levy’s concentration theorem, the proof is from [Shi14].

Proof. Let fn : Sn(
√
n) → R, n = 1, 2, . . ., be 1-Lipschitz functions.

Let x and x′ be two given real numbers and γ1(−∞, x] = σ∞[−∞, x′], suppose σ∞{x′} = 0, where
{σi} is a sequence of Borel probability measures on R.

We want to show that, for all non-negative real numbers ϵ1 and ϵ2.

σ∞[x′ − ϵ1, x
′ + ϵ2] ≥ γ1[x− ϵ1, x+ ϵ2]

Consider the two spherical cap Ω+ := {fni ≥ x′} and Ω− := {fni ≤ x}. Note that Ω+ ∪ Ω− =
Sni(

√
ni).

It is sufficient to show that,

Uϵ1(Ω+) ∪ Uϵ2(Ω−) ⊂ {x′ − ϵ1 ≤ fni ≤ x′ + ϵ2}

By 1-Lipschitz continuity of fni , we have for all ζ ∈ Uϵ1(Ω+), there is a point ξ ∈ Ω+ such that
d(ζ, ξ) ≤ ϵ1. So Uϵ1(Ω+) ⊂ {fni ≥ x′ − ϵ1}. With the same argument, we have Uϵ2(Ω−) ⊂ {fni ≤
x+ ϵ2}.

So the push-forward measure of (fni)∗σ
ni of [x′ − ϵ1, x

′ + ϵ2] is

(fni)∗σ
ni [x′ − ϵ1, x

′ + ϵ2] = σni(x′ − ϵ1 ≤ fni ≤ x′ + ϵ2)

≥ σni(Uϵ1(Ω+) ∩ Uϵ2(Ω−))

= σni(Uϵ1(Ω+)) + σni(Uϵ2(Ω−))− 1

By the lemma 3, we have

σni(Uϵ1(Ω+)) ≥ σni(Uϵ1(BΩ+)) and σni(Uϵ2(Ω−)) ≥ σni(Uϵ2(BΩ−))

By the lemma 6, we have

σni(Uϵ1(Ω+)) + σni(Uϵ2(Ω−)) → γ1[x′ − ϵ1, x
′ + ϵ2] + γ1[x− ϵ1, x+ ϵ2]

Therefore,

σ∞[x′ − ϵ1, x
′ + ϵ2] ≥ lim inf

i→∞
(fni)∗σ

ni [x′ − ϵ1, x
′ + ϵ2]

≥ γ1[x′ − ϵ1,∞) ∩ γ1(−∞, x+ ϵ2]− 1

= γ1[x− ϵ1, x+ ϵ2]
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The full proof of Levy’s concentration theorem requires more digestion for cases where σ∞ ̸= δ±∞
but I don’t have enough time to do so. This section may be filled in the next semester.

1.3 The application of the concentration of measure phenomenon
in non-commutative probability theory

In quantum communication, we can pass classical bits by sending quantum states. However, by
the indistinguishability (Proposition ??) of quantum states, we cannot send an infinite number of
classical bits over a single qubit. There exists a bound for zero-error classical communication rate
over a quantum channel.

Theorem 7. Holevo bound:

The maximal amount of classical information that can be transmitted by a quantum system is
given by the Holevo bound. log2(d) is the maximum amount of classical information that can be
transmitted by a quantum system with d levels (that is, basically, the number of qubits).

The proof of the Holevo bound can be found in [NC10]. In current state of the project, this theorem
is not heavily used so we will not make annotated proof here.

1.3.1 Quantum communication

To surpass the Holevo bound, we need to use the entanglement of quantum states.

Definition 8. Bell state:

The Bell states are the following four states:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

These are a basis of the 2-qubit Hilbert space.

1.3.2 Superdense coding and entanglement

The description of the superdense coding can be found in [GMS15] and [Hay10].

Suppose A and B share a Bell state (or other maximally entangled state) |Φ+⟩ = 1√
2
(|00⟩+ |11⟩),

where A holds the first part and B holds the second part.

A wishes to send 2 classical bits to B.

A performs one of four Pauli unitaries (some fancy quantum gates named X, Y, Z, I) on the
combined state of entangled qubits ⊗ one qubit. Then A sends the resulting one qubit to B.

This operation extends the initial one entangled qubit to a system of one of four orthogonal Bell
states.
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B performs a measurement on the combined state of the one qubit and the entangled qubits he
holds.

B decodes the result and obtains the 2 classical bits sent by A.

Figure 1.3: Superdense coding, image from [Hay10]

Note that superdense coding is a way to send 2 classical bits of information by sending 1 qubit
with 1 entangled qubit. The role of the entangled qubit is to help them to distinguish the
4 possible states of the total 3 qubits system where 2 of them (the pair of entangled qubits) are
mathematically the same.

Additionally, no information can be gained by measuring a pair of entangled qubits. To send
information from A to B, we need to physically send the qubits from A to B. That means, we
cannot send information faster than the speed of light.

1.3.3 Hayden’s concentration of measure phenomenon

The application of the concentration of measure phenomenon in the superdense coding can be
realized in random sampling the entangled qubits [Hay10]:

It is a theorem connecting the following mathematical structure:

CP dAdB−1P(A⊗B)

SA [0,∞) ⊂ R

TrB
f

H(ψA)

Figure 1.4: Mathematical structure for Hayden’s concentration of measure phenomenon

• The red arrow is the concentration of measure effect. f = H(TrB(ψ)).
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• SA denotes the mixed states on A.

To prove the concentration of measure phenomenon, we need to analyze the following elements
involved in figure 1.4:

The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For
this research topic, we will not prove it.

Due to time constrains of the projects, the following lemma is demonstrated but not investigated
thoroughly through the research:

Lemma 9. Page’s lemma for expected entropy of mixed states

Choose a random pure state σ = |ψ⟩⟨ψ| from A′ ⊗A.

The expected value of the entropy of entanglement is known and satisfies a concentration inequality
known as Page’s formula [Bengtsson˙Zyczkowski˙2017; Pag; San95][15.72].

E[H(ψA)] =
1

ln(2)

 dAdB∑
j=dB+1

1

j
− dA − 1

2dB

 ≥ log2(dA)−
1

2 ln(2)

dA
dB

It basically provides a lower bound for the expected entropy of entanglement. Experimentally, we
can have the following result (see Figure 1.5):

Figure 1.5: Entropy vs dimension

Then we have bound for Lipschitz constant η of the map S(φA) : P(A⊗B) → R

Lemma 10. The Lipschitz constant η of S(φA) is upper bounded by
√
8 log2(dA) for dA ≥ 3.
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Proof. The proof use lagrange multiplier method to find the maximum of the gradient of S(φA).
TODO: use lagrange multiplier method to find the maximum of the gradient of S(φA).

From Levy’s lemma, we have

If we define β = 1
ln(2)

dA
dB

, then we have

Pr[H(ψA) < log2(dA)− α− β] ≤ exp

(
− 1

8π2 ln(2)

(dAdB − 1)α2

(log2(dA))
2

)
where dB ≥ dA ≥ 3 [HLW06].

Experimentally, we can have the following result:

As the dimension of the Hilbert space increases, the chance of getting an almost maximally entan-
gled state increases (see Figure 1.6).

Figure 1.6: Entropy vs dA

11



12



References for Chapter 1
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