% chapters/chap2.tex \documentclass[../main.tex]{subfiles} \ifSubfilesClassLoaded{ \addbibresource{../main.bib} } \begin{document} \chapter{Seigel-Bargmann Space} In this chapter, we will collect ideas and other perspective we have understanding the concentration of measure phenomenon. Especially with symmetric product of $\C P^1$ and see how it relates to Riemman surfaces and Seigel-Bargmann spaces. \begin{figure}[h] \centering \begin{tikzpicture}[node distance=40mm, thick, main/.style={draw, draw=white}, towards/.style={->}, towards_imp/.style={<->,red}, mutual/.style={<->} ] \node[main] (cp) {$\mathbb{C}P^{n}$}; \node[main] (c) [below of=cp] {$\mathbb{C}^{n+1}$}; \node[main] (p) [right of=cp] {$\mathbb{P}^n$}; \node[main] (sym) [below of=p] {$\operatorname{Sym}_n(\mathbb{C}P^1)$}; % draw edges \draw[towards] (c) -- (cp) node[midway, left] {$z\sim \lambda z$}; \draw[towards] (c) -- (p) node[midway, fill=white] {$w(z)=\sum_{i=0}^n Z_i z^i$}; \draw[towards_imp] (cp) -- (p) node[midway, above] {$w(z)\sim w(\lambda z)$}; \draw[mutual] (p) -- (sym) node[midway, right] {root of $w(z)$}; \end{tikzpicture} \caption{Majorana stellar representation} \label{fig:majorana_stellar_representation} \end{figure} Basically, there is a bijection between the complex projective space $\mathbb{C}P^n$ and the set of roots of a polynomial of degree $n$. We can use a symmetric group of permutations of $n$ complex numbers (or $S^2$) to represent the $\mathbb{C}P^n$, that is, $\mathbb{C}P^n=S^2\times S^2\times \cdots \times S^2/S_n$. One might be interested in the random sampling over the $\operatorname{Sym}_n(\mathbb{C}P^1)$ and the concentration of measure phenomenon on that. \section{Majorana stellar representation of the quantum state} \section{Space of complex valued functions and pure states} \ifSubfilesClassLoaded{ \printbibliography[title={References for Chapter 2}] } \end{document}