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Chapter 0: Brief definitions and basic
concepts

As the future version of me might forgot everything we have over the summer, as I did for now, I
will make a review again from the simple definition to recall the necessary information to tell you
why we are here and how we are going to proceed.

This section serve as reference for definitions, notations, and theorems that we will use later. This
section can be safely ignored if you are already familiar with the definitions and theorems.

But for the future self who might have no idea what I'm talking about, we will provided detailed
definitions to you to understand the concepts.

0.1 Complex vector spaces

The main vector space we are interested in is C"; therefore, all the linear operators we defined are
from C" to C".

Definition 1. We denote a vector in vector space as |p) = (z1,...,2n) (might also be infinite
dimensional, and z; € C).

Here ) is just a label for the vector, and you don’t need to worry about it too much. This is also
called the ket, where the counterpart (1| is called the bra, used to denote the vector dual to 1);

such an element is a linear functional if you really want to know what that is.

Few additional notation will be introduced, in this document, we will follows the notation used in
mathematics literature [Ax123]

e (¢|p) is the inner product between two vectors, and (1| A |p) is the inner product between
Alp) and (1], or equivalently AT (| and |¢).

e Given a complex matrix A = C™*",

1. A is the complex conjugate of A.



14+i 244 341 1—i 2—i 3—14
A= |44+i 5+4 64+i|, A= |4—4i 5—i 6—1
T+i 8+1i 9+ 7T—i 8—i 9—1i

2. AT denotes the transpose of A.

1+7 249 341 1+¢ 447 T+4
A= |44 544 64+i| , AT =|2+4+i 5+i 8+
T+i 84+1¢ 9+ 341 6+ 941
3. A* = (AT) denotes the complex conjugate transpose, referred to as the adjoint, or

Hermitian conjugate of A.

1+4 2449 3+1 1—7 4—9 7T—4
A= |4+i 541 6+i| ,A"=|2—7 5—1 8—1i
T+i 8+1 9+1 3—1 6—1 9—1

4. A is unitary if A*A = AA*=1.

5. A is self-adjoint (hermitian in physics literature) if A* = A.

Motivation of Tensor product

Recall from the traditional notation of product space of two vector spaces V and W, that is, V x W,
is the set of all ordered pairs (|v), |w)) where |v) € V and |w) € W.

The space has dimension dim V' + dim W.

We want to define a vector space with the notation of multiplication of two vectors from different
vector spaces.

That is
(Jv1) + |v2)) ® [w) = (|v1) @ |w)) + (|v2) @ |w))
[v) @ (Jwi) + [w2)) = (Jv) @ [w1)) + (Jv) @ [w2))

and enables scalar multiplication by

AJv) @ [w)) = (Av) @ [w) = |v) @ (Aw))

And we wish to build a way to associate the basis of V' and W with the basis of V@ W. That
makes the tensor product a vector space with dimension dim V' x dim W.
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Definition 2. Definition of linear functional

A linear functional is a linear map from V to F.

Note the difference between a linear functional and a linear map.

A generalized linear map is a function f : V — W satisfying the condition.
o flu) +1v)) = f(lw) + f(v))
o f(A|v)) = Af(|v))

Definition 3. A bilinear functional is a bilinear function 8 :V x W — T satisfying the condition
that [v) — B(|v),|w)) is a linear functional for all |w) € W and |w) — B(|v),|w)) is a linear
functional for all |v) € V.

The vector space of all bilinear functionals is denoted by B(V, W).
Definition 4. Let V,W be two vector spaces.

Let V' and W' be the dual spaces of V' and W, respectively, that is V' = {4 : V. — F} and
W' ={¢: W — F}, ¢, ¢ are linear functionals.

The tensor product of vectors v € V and w € W is the bilinear functional defined by Y(¢, ¢) €
V' x W' given by the notation

(v@w)(¥,¢) = P(v)d(w)

The tensor product of two vector spaces V- and W is the vector space B(V', W)

Notice that the basis of such vector space is the linear combination of the basis of V' and W', that
is, if {e;} is the basis of V' and {f;} is the basis of W', then {e; ® f;} is the basis of B(V',W').

That is, every element of B(V',W') can be written as a linear combination of the basis.

Since {e;} and {f;} are bases of V' and W', respectively, then we can always find a set of linear
functionals {¢;} and {1;} such that ¢i(e;) = 0i; and V;(fi) = 0i5.

1 ifi—i
Here 6;; = i ‘7, is the Kronecker delta.
0 otherwise

n m
VeW= Zzaij@(v)%(w) e Vi eWw
i=1 j=1
Note that > i, D77 ajjdi(v)i;(w) is a bilinear functional that maps V' x W' to F.

This enables basis-free construction of vector spaces with proper multiplication and scalar multi-
plication.



Examples of tensor product for vectors

Let V = C% W = C3, choose bases {|0),|1)} C V,{]0),]1),[2)} C W.

w1
’U:(Z;):U1|O>+U2|1>€V,w: wWo :w1’0>+w2|1>+w3‘2>6W
w3

Then the tensor product v ® w is given by

V1w V1w V1w
VR W= 3) et
Vw1 Vw2 V2w3
- J

Examples of tensor product for vector spaces

Let V = C2, W = C3, choose bases {|0),|1)} c V,{[0),[1),]2)} c W.
Then a basis of the tensor product is

{100}, |01),02) , |10} , |11} , [12)},

where |ij) := |i) ® |j).
An example element of V @ W is

) =210)@ 1) + (1 +1) [ ®|0) —i[1) ®[2).
With respect to the ordered basis
(|00 ,101),102),[10),[11),]12)),

this tensor corresponds to the coordinate vector

Using the canonical identification
C2 ® C3 o~ (C2><3

where
i) ® |j) — Eij,
the same tensor is represented by the matrix

0 2 0
) — <1+i 0 —i)'

N J

Definition 5. The vector space defined by the tensor product is equipped with the unique inner
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product (v @ w,u @ )yyew : VOW xV @ W — F defined by

<U ®w,u @ ‘T> = <U’ U>V<’LU, $>W
In practice, we ignore the subscript of the vector space and just write (v ® w,u® z) = (v, u)(w, x).
Partial trace

Definition 6. Let T' be a linear operator on H, (e1, ez, -+ ,ey) be a basis of H and (€1, €2, ,€p)
be a basis of dual space H*. Then the trace of T is defined by

n n

Tr(T) = e(T(e;) =Y (ei, Tles))

1=1 i=1

This is equivalent to the sum of the diagonal elements of T'.

Definition 7. Let T be a linear operator on H = A ® B, where A and B are finite-dimensional
Hilbert spaces.

An operator T on H = A QB can be written as
n

T = Z a;A; ® B;
i=1

where A; 1s a linear operator on A and B; is a linear operator on B.

The B-partial trace of T (Tra(T') : LA ® B) — L(A)) is the linear operator on A defined by

TI‘B (T) = Z a; TI‘(BZ)AZ
i=1
Or we can define the map L, : A -+ A ® B by

Ly(u) =u®wv

Note that (u, L (v') @ v') = (u,u') (v,0") = (u @ v, @) = (Ly(u), v’ @').
Therefore, Ly 3, u; @ vj = (v, vj)u;.
Then the partial trace of T' can also be defined by

Let {v;} be a set of orthonormal basis of B.
Trg(T) =Y L (T) Ly,
J
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Definition 8. Let T be a linear operator on H = A ® B, where A and B are finite-dimensional
Hilbert spaces.

Let p be a state on B consisting of orthonormal basis {v;} and eigenvalue {\;}.

The partial trace of T with respect to p is the linear operator on A defined by
Tra(T) = > ML (T)Ly,
J

This introduces a new model in mathematics explaining quantum mechanics: the non-commutative
probability theory.

0.2 Non-commutative probability theory

The non-commutative probability theory is a branch of generalized probability theory that studies
the probability of events in non-commutative algebras.

There are several main components of the generalized probability theory; let’s see how we can
formulate them, comparing with the classical probability theory.

First, we define the Hilbert space in case one did not make the step from the linear algebra courses
like me.

Definition 9. Hilbert space:
A Hilbert space is a complete inner product space.

That is, a vector space equipped with an inner product that is complete (every Cauchy sequence
converges to a limit).

To introduce an example of Hilbert space we use when studying quantum mechanics, we need
to introduce a common inner product used in C".

Proposition 10. The Hermitian inner product on the complex vector space C"™ makes it a
Hilbert space.

Proof. We first verify that the Hermitian inner product

n
<U, U> = val
=1

on C" satisfies the axioms of an inner product:
1. Conjugate symmetry: For all u,v € C”,

n

(u,v)y = Zuﬁ-vi = Zvﬁul = (v, u).
i=1

=1




2. Linearity: For any u,v,w € C™ and scalars a,b € C, we have

(u, av + bw) = Zuﬁ(avi + bw;) = a{u,v) + b{u, w).
i=1

3. Positive definiteness: For every u = (uy,ug, -+ ,u,) € C", let u; = a; + b;i, where
aj, bj € R.

n

(u) = wuy =Y (af +b7) >0,
j=1

i=1

with equality if and only if v = 0.
Therefore, the Hermitian inner product is an inner product.
Next, we show that C" is complete with respect to the norm induced by this inner product:

[ull = v/ (u, w).

Since C™ is finite-dimensional, every Cauchy sequence (with respect to any norm) converges in
C™. This is a standard result in finite-dimensional normed spaces, which implies that C" is
indeed complete.

Therefore, since the Hermitian inner product fulfills the inner product axioms and C™ is complete,

the complex vector space C" with the Hermitian inner product is a Hilbert space. O
N J

Another classical example of Hilbert space is L%(Q, F, P), where (Q2, F, P) is a measure space ({2 is
a set, F is a o-algebra on €2, and P is a measure on J). The L? space is the space of all function
on €2 that is

1. square integrable: square integrable functions are the functions f : 2 — C such that

/ F@)2dP(w) < o0
Q

with inner product defined by
()= [ F@lo()ape)

2. complex-valued: functions are complex-valued measurable. f = u + vi is complex-valued if
u and v are real-valued measurable.

Proposition 11. L?(Q,F, P) is a Hilbert space.

Proof. We check the two conditions of the Hilbert space:
e Completeness: Let (f,) be a Cauchy sequence in L?(2,F, P). Then for any € > 0, there
exists an N such that for all m,n > N, we have

/Q (@) — ful@)PdP(w) < &

This means that (f,,) is a Cauchy sequence in the norm of L*(Q,J, P).




e Inner product: The inner product is defined by

(f9) = /Q F@)g(w)dP(w)

This is a well-defined inner product on L?(2,F, P). We can check the properties of the
inner product:
— Linearity:
(af +bg, h) = alf, h) + blg, h)

— Conjugate symmetry:

(f9) =19, /)
— Positive definiteness:
(f,f)=0
[
\ J
Let H be a Hilbert space. H consists of complex-valued functions on a finite set Q = {1,2,...,n},
and the functions (e, es,...,e,) form an orthonormal basis of H. (We use Dirac notation |k) to

denote the basis vector ey [Par92].)

As an analog to the classical probability space (€2, F, 1), which consists of a sample space 2 and
a probability measure p on the state space F, the non-commutative probability space (H,P, p)
consists of a Hilbert space H and a state p on the space of all orthogonal projections P.

The detailed definition of the non-commutative probability space is given below:
Definition 12. Non-commutative probability space:

A non-commutative probability space is a pair (B(H),P), where B(H) is the set of all bounded
linear operators on J.

A linear operator on H is bounded if for all u such that ||u|| < 1, we have |Aul| < M for some
M > 0.

P is the set of all orthogonal projections on B(H).
The set P = {P € B(H) : P* = P = P?} is the set of all orthogonal projections on B(H).

Recall from classical probability theory, we call the initial probability distribution for possible
outcomes in the classical probability theory as our state, simillarly, we need to define the state in
the non-commutative probability theory.

Definition 13. Non-commutative probability state:
Given a non-commutative probability space (B(H),P),
A state is a unit vector (1| in the Hilbert space H, such that (| [) = 1.

FEvery state uniquely defines a map p : P — [0,1], p(P) = (| P |¢p) (commonly named as density
operator) such that:

e p(O) =0, where O is the zero projection, and p(I) =1, where I is the identity projection.
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o If P, P,..., P, are pairwise disjoint orthogonal projections, then p(Py + Py + -+ 4+ Py,) =
> i1 P(F).

Note that the pure states are the density operators that can be represented by a unit vector (4| in
the Hilbert space H, whereas mixed states are the density operators that cannot be represented by
a unit vector in the Hilbert space J.

If (|¢1), [12), -+, |¢n)) is an orthonormal basis of H consisting of eigenvectors of p, for the eigen-
values p1,p2, -+ ,pn, then p; > 0 and 377, p; = 1.

We can write p as
n
p=> pjlth) (]
j=1
(Under basis [1);), it is a diagonal matrix with p; on the diagonal.)

The counterpart of the random variable in the non-commutative probability theory is called an
observable, which is a Hermitian operator on H (for all ¢, ¢ in the domain of A, we have (Ay, ¢) =
(1, A¢). This kind of operator ensures that our outcome interpreted as probability is a real number).

Definition 14. Observable:
Let B(R) be the set of all Borel sets on R.

An (real-valued) observable (random variable) on the Hilbert space H, denoted by A, is a projection-
valued map (measure) Py : B(R) — P(H).

Satisfies the following properties:
e P4(0) = O (the zero projection)
o P4(R) =1 (the identity projection)
o [For any sequence Ay, Aa,--- , A, € B(R), the following holds:
— Pa(UiLy 4i) = Vi, Pa(4)
- PA(ﬂLl Aj) = /\?:1 Pa(Aj)
— Py(A°) =1— P4(A),VA € B(R)

If A is an observable determined by the map P4 : B(R) — P(H), P4 is a spectral measure (a
complete additive orthogonal projection valued measure on B(R)). And every spectral measure can
be represented by an observable. [Par(05]

Proposition 15. If A; are mutually disjoint (that is Pa(A;)Pa(A;) = Pa(A;)Pa(A;) = O for
i#j), then Pa(Uj—y 4;) = 25—y Pa(4y)

Definition 16. Probability of a random variable:

Let A be a real-valued observable on a Hilbert space H. p be a state. The probability of observing
the outcome E € B(R) is given by:

u(E) = Tr(pPa(E))

9



Restriction of a quantum state to a commutative subalgebra defines an ordinary probability mea-
sure.

Let
1 0
z_(o _1).

The eigenvalues of Z are +1 and —1, with corresponding normalized eigenvectors

The spectral projections are

P =0 01= (g o). Pat-m=mal= (3 7).

The associated projection-valued measure Py satisfies

Pz({1,-1}) =1, Pz(0) =0.

0 1
X = (1 0> '
1 1
=0+, 1= =00 - 1),

with eigenvalues +1 and —1, respectively.
The corresponding spectral projections are

Let

The normalized eigenvectors of X are

+)

P =19 =3 (1 1)

Pe- =1 -1=5 (4 7).
ranestn = (5 o) 3 (0 1) =305 o)

rectnrmn =5 (1 1) (5 0) =51 o)

Pz({1})Px({1}) # Px({1})Pz({1}),

the projections do not commute.

Compute

On the other hand,

Since

10



Let p be a density operator on C2, i.e.

For a pure state [¢), one has

p=l¢) @l

The probability that a measurement associated with a PVM P yields an outcome in a Borel set
Ais
P(A) = Tr(p P(A)).

p=m0= (5 o)

T(pPA)) =1 Te(pPx((1}) = 5.

For example, let

Then

Definition 17. Definition of measurement:

A measurement (observation) of a system prepared in a given state produces an outcome x, T is
a physical event that is a subset of the set of all possible outcomes. For each x, we associate a
measurement operator M, on J.

Given the initial state (pure state, unit vector) u, the probability of measurement outcome x is given
by:

p(z) = | Moul]®

Note that to make sense of this definition, the collection of measurement operators {My} must
satisfy the completeness requirement:

1= pla) =Y [IMul® = (Mpu, Mpu) = (u, (Y M;M,)u)

zeX zeX zeX zeX

S0 Y pex MiM, = 1.

Here is Table [l|summarizing the analog of classical probability theory and non-commutative (quan-
tum) probability theory [Fer|:

11



Table 1: Analog of classical probability theory and non-commutative (quantum) probability theory

Classical probability

Non-commutative probability

Sample space (2, cardinality || = n, example: =

{0,1}

Complex Hilbert space H, dimension dimH = n, ex-
ample: H = C?

Common algebra of C valued functions

Algebra of bounded operators B(H)

f + f complex conjugation

P — P* adjoint

Events: indicator functions of sets

Projections: space of orthogonal projections P C

B(K)

functions f such that f2=f=f

orthogonal projections P such that P* = P = P?

R-valued functions f = f

self-adjoint operators A = A*

Iy—1(ay) is the indicator function of the set f~'({\})

P() is the orthogonal projection to eigenspace

f= Z)\ERange(f) )\]If_l({)‘})

A=) espa) AP

Probability measure p on €2

Density operator p on H

Delta measure ¢,

Pure state p = |¢)(¢|

p is non-negative measure and y ., p({i}) =1

p is positive semi-definite and Tr(p) =1

Expected value of random variable f is E,(f) =

Yica f@u({i})

Expected value of operator A is E,(A) = Tr(pA)

Variance of random variable f is Var,(f) =

2ima (f() — Eu())?n({i})

Variance of operator A is Var,(A) = Tr(pA?) —
Tr(pA)®

Covariance of random variables f and g is

Covy(f,9) = 2521 (F() = Eu(£)(9() — Bulg)n({i})

Covariance of operators A and B is Cov,(A,B) =
Tr(pAo B) — Tr(pA) Tr(pB)

Composite system is given by Cartesian product of the
sample spaces 21 x o

Composite system is given by tensor product of the
Hilbert spaces H; ® Ho

Product measure gy X po on €2y x €y

Tensor product of space p; ® ps on H; ® Ho

Marginal distribution m.v

Partial trace Tra(p)

0.2.1 Quantum physics and terminologies

In this section, we will introduce some terminologies and theorems used in quantum physics that
are relevant to our study. Assuming no prior knowledge of quantum physics, we will provide brief

definitions and explanations for each term.

One might ask, what is the fundamental difference between a quantum system and a classical
system, and why can we not directly apply those theorems in classical computers to a quantum
computer? It turns out that quantum error-correcting codes are hard due to the following definitions

and features for quantum computing.

Definition 18. All quantum operations can be constructed by composing four kinds of transforma-

tions: (adapted from Chapter 10 of (BZ17])
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1. Unitary operations. U(-) for any quantum state. It is possible to apply a non-unitary operation
for an open quantum system, but that is usually not the focus for quantum computing and
usually leads to non-recoverable loss of information that we wish to obtain.

2. Extend the system. Given a quantum state p € HY, we can extend it to a larger quantum
system by “entangle” (For this report, you don’t need to worry for how quantum entanglement
works) it with some new states o € HX (The space where the new state dwells is usually called
ancilla system) and get p' = p@ o € HY @ K.

3. Partial trace. Given a quantum state p € HN and some reference state o € HE, we can trace
out some subsystems and get a new state p' € HNK.

4. Selective measurement. Given a quantum state, we measure it and get a classical bit; unlike
the classical case, the measurement is a probabilistic operation. (More specifically, this is
some projection to a reference state corresponding to a classical bit output. For this report,
you don’t need to worry about how such a result is obtained and how the reference state is
constructed.)

U(n) is the group of all n x n unitary matrices over C,

Uln) = {A € C™": A*A = AA* = I,}

The uniqueness of such measurement came from the lemma below |[Mec]

Lemma 19. Let (U(n),||- ||, ) be a metric measure space where || - || is the Hilbert-Schmidt norm
and p is the measure function.

The Haar measure on U(n) is the unique probability measure that is invariant under the action of
U(n) on itself.

That is, fiting B € U(n), VA€ U(n), p(A-B) = u(B - A) = p(B).

The Haar measure is the unique probability measure that is invariant under the action of U(n) on
itself.

Definition 20. Pure state:

A random pure state ¢ is any random wvariable distributed according to the unitarily invariant
probability measure on the pure states P(A) of the system A, denoted by ¢ €r P(A).

It is trivial that for the space of pure state, we can easily apply the Haar measure as the unitarily
invariant probability measure since the space of pure state is S™ for some n. However, for the case
of mixed states, that is a bit complicated and we need to use partial tracing to defined the rank-s
random states.

Definition 21. Rank-s random state.

For a system A and an integer s > 1, consider the distribution onn the mized states S(A) of A
induced by the partial trace over the second factor form the uniform distribution on pure states of

A® C*®. Any random variable p distributed as such will be called a rank-s random states; denoted
as p €g Ss(A). And P(A) = S1(4).

13



Proposition 22. Proposition of indistinguishability:

Suppose that we have two systems uy, us € Hy, the two states are distinguishable if and only if they
are orthogonal.

Proof. Ways to distinguish the two states:
1. Set X = {0, 1,2} and Mz = \ul)(uz|, MO =1- M1 — M2
2. Then { My, M7, M5} is a complete collection of measurement operators on H.

3. Suppose the prepared state is ui, then p(1) = |[|[Myui||? = |w1]]? = 1, p(2) = || Mauy||?> = 0,
p(0) = [[Mous ||* = 0.

If they are not orthogonal, then there is no choice of measurement operators to perfectly distinguish
the two states.

O

Intuitively, if the two states are not orthogonal, then for any measurement (projection) there exists
non-zero probability of getting the same outcome for both states.

0.2.2 Random quantum states

First, we need to define what is a random state in a bipartite system.

14



Chapter 1

Concentration of Measure And
Quantum Entanglement

First, we will build the mathematical model describing the behavior of quantum system and why
they makes sense for physicists and meaningful for general publics.

1.1 Motivation

First, we introduce a motivation for introducing non-commutative probability theory to the study
of quantum mechanics. This section is mainly based on the book [KM].

1.1.1 Light polarization and the violation of Bell’s inequality

The light which comes through a polarizer is polarized in a certain direction. If we fix the first
filter and rotate the second filter, we will observe the intensity of the light will change.

The light intensity decreases with « (the angle between the two filters). The light should vanish
when o = /2.

However, for a system of 3 polarizing filters Fy, F», F3, having directions a1, ae, as, if we put them
on the optical bench in pairs, then we will have three random variables P;, P>, Ps.

Theorem 23. Bell’s 3 variable inequality:

For any three random variables Py, Ps, P3 in a classical probability space, we have
PI‘Ob(Pl =1,P3= 0) < PI‘Ob(Pl =1,P = 0) + PI‘Ob(Pg =1,P;= O)

Proof. By the law of total probability there are only two possibility if we don’t observe any light
passing the filter pair Fj, F}j, it means the photon is either blocked by F; or Fj, it means

15
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FIG. 1

Figure 1.1: The light polarization experiment, image from [KM]

PI‘Ob(Pl = 1,P3 = 0) = PI‘Ob(Pl = 1,P2 = 0,P3 = 0)
+ PI‘Ob(Pl =1,P=1P;= 0)
< PI’Ob(Pl =1,P = 0) + PI‘Ob(PQ =1,P;= O)
O

However, according to our experimental measurement, for any pair of polarizers F;, F;, by the
complement rule, we have

11,
25—5005 (0 — )
! (v )
= 5 sin’(ai —ay

This leads to a contradiction if we apply the inequality to the experimental data.

1 1
sin?(oq — a3) < B sin?(oq — a) + 5 sin?(ag — a3)

If oy = 0,00 = §,3 = %, then

1 1
3 sin2(—g) < 551112(—6) + 3 Sln2(% - g)
3 < 1 n 1
8§~ 8 8
3 1
<z
8 4
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Other revised experiments (e.g., Aspect’s experiment, calcium entangled photon experiment) are
also conducted and the inequality is still violated.

1.1.2 The true model of light polarization
The full description of the light polarization is given below:

State of polarization of a photon: ¥ = «|0) 4+ 3|1), where |0) and |1) are the two orthogonal
polarization states in C2.

Polarization filter (generalized 0,1 valued random variable): orthogonal projection P, on C? corre-
sponding to the direction « (operator satisfies P = P, = P2).

The matrix representation of P, is given by

PF( cos?() cos(a)?m(a)>

cos(a) sin(«) sin?(a)
Probability of a photon passing through the filter P, is given by (P,,); this is cos?(a) if we set
¥ = 0).

Since the probability of a photon passing through the three filters is not commutative, it is impos-
sible to discuss Prob(P; = 1, P3 = 0) in the classical setting.

We now show how the experimentally observed probability

3 sin? (o — )

arises from the operator model.

Assume the incoming light is unpolarized. 1t is therefore described by the density matrix

1
— I
P=3

Let P,, and P, be the orthogonal projections corresponding to the two polarization filters with
angles o; and a;.

The probability that a photon passes the first filter P,, is given by the Born rule:

1 1
Prob(P; = 1) = tr(pP,,) = 5 tr(P,,) = 3

If the photon passes the first filter, the post-measurement state is given by the Liiders rule:

Py, pPa,
—r p = ——— = P,..
’ & tr(pPa,) .

The probability that the photon then passes the second filter is

17



Prob(Pj = 1| P; = 1) = tr(Pa, Pa,) = cos* (e — o).
Hence, the probability that the photon passes P, and is then blocked by P,; is

11,
:§—§cos (0 — o)

=35 sin?(a; — ;).

This agrees with the experimentally observed transmission probabilities, but it should be empha-
sized that this quantity corresponds to a sequential measurement rather than a joint probability in
the classical sense.

1.2 Concentration of measure phenomenon

Definition 24. n-Lipschitz function

Let (X,distx) and (Y, disty) be two metric spaces. A function f: X —'Y is said to be n-Lipschitz
if there exists a constant L € R such that

disty (f (=), f(y)) < Ldistx(z,y)

for allz,y € X. And n = ||f||Lip = infrer L.

That basically means that the function f should not change the distance between any two pairs of
points in X by more than a factor of L.

This is a stronger condition than continuity, every Lipschitz function is continuous, but not every
continuous function is Lipschitz.

Lemma 25. Isoperimetric inequality on the sphere:

Let 0,(A) denote the normalized area of A on the n-dimensional sphere S™. That is, 0,(A) =
Area(A)
Area(S™) "

Let € > 0. Then for any subset A C S™, given the area 0,(A), the spherical caps minimize the
volume of the e-neighborhood of A.

Suppose o™ (+) is the normalized volume measure on the sphere S™(1), then for any closed subset
Q C S™(1), we take a metric ball Bq of S™(1) with 0™(Bgq) = ¢™(2). Then we have

o"(U:(©)) 2 0" (Ur(Bq))
where Up.(A) ={z € X : d(z,A) <r}

18



Intuitively, the lemma means that the spherical caps are the most efficient way to cover the sphere.
Here, the efficiency is measured by the epsilon-neighborhood of the boundary of the spherical cap.

To prove the lemma, we need to have a good understanding of the Riemannian geometry of the
sphere. For now, let’s just take the lemma for granted.

1.2.1 Levy’s concentration theorem
Theorem 26. Levy’s concentration theorem:

An arbitrary 1-Lipschitz function f : S™ — R concentrates near a single value ag € R as strongly
as the distance function does.

That is,
(n— 1)€2>

ulz € 5™ | f(z) — ag| > €} < rnle) < 2exp (— '

where .
2 cos™L(t)dt

() = Je O

Jo? cosn—L(t)dt

ag is the Levy mean of function f, that is, the level set f~1 : R — S™ divides the sphere into equal
halves, characterized by the following equality:

—_

u(f (=00, a0)) > = and p(f~[ag, 00)) > 3

N

We will prove the theorem via the Maxwell-Boltzmann distribution law in this section for simplicity.
[Shil4] The theorem will be discussed later in more general cases.

Definition 27. Gaussian measure:

We denote the Gaussian measure on RF as ~*.

dy*(z) =

1 1,
exp(—g |[=[|")dz

vV o 2

T eRF, |z|? = Zle x? is the Buclidean norm, and dx is the Lebesgue measure on R¥.

Basically, you can consider the Gaussian measure as the normalized Lebesgue measure on R¥ with
standard deviation 1.

It also has another name, the Projective limit theorem. [Ver18]

If X ~ Unif(S™(y/n)), then for any fixed unit vector z we have (X, z) — N(0, 1) in distribution as
n — 00.

Lemma 28. Mazwell-Boltzmann distribution law:

For any natural number k,
Almn)e0" (@) _ ()
dx dx
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—

Figure 3.9 The projective central limit theorem: the projection of the
uniform distribution on the sphere of radius v/n onto a line converges to the

normal distribution N(0,1) as n — oc.

Figure 1.2: Maxwell-Boltzmann distribution law, image from [Verl§]

where (T 1)«0™ is the push-forward measure of o™ by my, .

In other words,

(Tnp)s0™ — Y* weakly as n — oo

Proof. We denote the n-dimensional volume measure on R¥ as voly,.

Observe that 73 (z),z € R¥ is isometric to S"~*(y/n — ||z[|2), that is, for any = € R, =

a sphere with radius \/n — ||z]|? (by the definition of m, ;).

So,

as n — oQ.

d(mp)s0™(x)  VOlp—g(m,

()

da ~ volg(S™(v/n))

(n -

(1)

n—

k

2

n—k

Sy = 2l?) T da

Note that lim, (1 — )" = e~ for any a > 0.

So

(n— l2]2)"2" = (n(1 — 12)) 7 s 0?5 exp(~12I)

n—k
|2

n

n—

(n —||z[*) "7

n—k —
Sjzl<ym(m = 12l?) 2" da
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Now we can prove Levy’s concentration theorem, the proof is from [Shil4].

Proof. Let f,: S™(v/n) - R, n=1,2,..., be 1-Lipschitz functions.

Let z and 2’ be two given real numbers and ! (—o0, 2] = 7o [—00, 2'], suppose oo {7’} = 0, where
{0} is a sequence of Borel probability measures on R.

We want to show that, for all non-negative real numbers €; and es.

Osolt’ — €1, 2’ + €3] > [z — €1, 2 + €]

Consider the two spherical cap Q4 = {fn, > 2’} and Q_ = {f,, < z}. Note that O, UQ_ =
It is sufficient to show that,

U, (Q+) U U€2(Q_) C {.%'/ —€ < fnl <z + 62}
By 1-Lipschitz continuity of f,,, we have for all ( € U, (24), there is a point & € Q4 such that

d(¢,€) <e1. So U, (Q4) C {fn, > 2’ — e1}. With the same argument, we have U, (Q_) C {f,, <
T+ €}

So the push-forward measure of (fy,)«0™ of [¢/ — €1, 2’ + €9] is

(fag)s0™ [’ —e1,2" + el = 0™ (2 — 1 < fu, <2’ + 2)
> 0™ (Usy (24) N Uy (1))
= 0" (Uey (24)) + 0™ (Uey () — 1

By the lemma we have

0" (Ue (Q4)) 2 0™ (Uey (Bay)) and 0" (Ue,(2-)) > 0™ (Uey(Ba_))

By the lemma 28] we have
0" (U, (24)) + 0™ (Uey (Q-)) = 72" = e1,2" + &2] + 7' [z — e, + 2]
Therefore,

Ooor’ — €1,7" + €] > Uiminf(fy,,)w0™ 2" — €1,2" + €]
1—00
> Vl[xl - 61700) ﬂ’yl(—oo,x =+ 62] -1

:’yl[x—el,x—i—q]
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The full proof of Levy’s concentration theorem requires more digestion for cases where G, # 0400
but I don’t have enough time to do so. This section may be filled in the next semester.

1.3 The application of the concentration of measure phenomenon
in non-commutative probability theory

In quantum communication, we can pass classical bits by sending quantum states. However, by

the indistinguishability (Proposition of quantum states, we cannot send an infinite number of

classical bits over a single qubit. There exists a bound for zero-error classical communication rate
over a quantum channel.

Theorem 29. Holevo bound:

The maximal amount of classical information that can be transmitted by a quantum system is
given by the Holevo bound. logy(d) is the maximum amount of classical information that can be
transmitted by a quantum system with d levels (that is, basically, the number of qubits).

The proof of the Holevo bound can be found in [NC10]. In current state of the project, this theorem
is not heavily used so we will not make annotated proof here.

1.3.1 Quantum communication
To surpass the Holevo bound, we need to use the entanglement of quantum states.
Definition 30. Bell state:

The Bell states are the following four states:

©7) = —=(100) + 1), [&7) = —=(100) — |11))

S

2

) = \2(\01> o)), U =

These are a basis of the 2-qubit Hilbert space.

(lo1) - [10))

S-S

1.3.2 Superdense coding and entanglement
The description of the superdense coding can be found in |[GMS15] and [Hay10].

Suppose A and B share a Bell state (or other maximally entangled state) |®1) = %(\OO} +]11)),
where A holds the first part and B holds the second part.

A wishes to send 2 classical bits to B.

A performs one of four Pauli unitaries (some fancy quantum gates named X, Y, Z, I) on the
combined state of entangled qubits ® one qubit. Then A sends the resulting one qubit to B.

This operation extends the initial one entangled qubit to a system of one of four orthogonal Bell
states.
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B performs a measurement on the combined state of the one qubit and the entangled qubits he
holds.

B decodes the result and obtains the 2 classical bits sent by A.

B
Vi

|Pa)

A

* Ut )
Ul)

Figure 1.3: Superdense coding, image from [Hay10)]

Note that superdense coding is a way to send 2 classical bits of information by sending 1 qubit
with 1 entangled qubit. The role of the entangled qubit is to help them to distinguish the
4 possible states of the total 3 qubits system where 2 of them (the pair of entangled qubits) are
mathematically the same.

Additionally, no information can be gained by measuring a pair of entangled qubits. To send
information from A to B, we need to physically send the qubits from A to B. That means, we
cannot send information faster than the speed of light.

1.3.3 Hayden’s concentration of measure phenomenon

The application of the concentration of measure phenomenon in the superdense coding can be
realized in random sampling the entangled qubits [Hay10]:

It is a theorem connecting the following mathematical structure:

P(A® B) — Cpdads-1

Trp

SAM) [0,00) CR

Figure 1.4: Mathematical structure for Hayden’s concentration of measure phenomenon
e The red arrow is the concentration of measure effect. f = H(Trg(v)).
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e S4 denotes the mixed states on A.

To prove the concentration of measure phenomenon, we need to analyze the following elements
involved in figure [T.4}

The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For
this research topic, we will not prove it.

Due to time constrains of the projects, the following lemma is demonstrated but not investigated
thoroughly through the research:

Lemma 31. Page’s lemma for expected entropy of mized states
Choose a random pure state o = ) (| from A’ @ A.

The expected value of the entropy of entanglement is known and satisfies a concentration inequality
known as Page’s formula [Pag; |San95; BZ1][15.72].

dadp
1 1 dy—1 1 dy
E[H = Y -- > log, (dg) — —— 24
[H(a)] @)\, 4= Jj  2p g2(da) 21n(2) dp

It basically provides a lower bound for the expected entropy of entanglement. Experimentally, we
can have the following result (see Figure [1.5]):

von Neumann Entropy vs. System Dimension, with Dimension of Subsystem A = 64

6 1 —— Expected Entropy
--- Theoretical Entropy | . e-=T
=== Predicted Entropy -

von Neumann Entropy (bits)

T T T T T T T
0 10 20 30 40 50 60
Dimension of Subsystem B

Figure 1.5: Entropy vs dimension

Then we have bound for Lipschitz constant n of the map S(¢4) : P(A® B) - R

Lemma 32. The Lipschitz constant n) of S(4) is upper bounded by /8logy(da) for da > 3.
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Proof. Consider the Lipschitz constant of the function g : A® B — R defined as g(p) = H(M(p4)),
where M : AQ B — P(A) is any fixed complete von Neumann measurement and H : P(A)@P(B) —
R is the Shannon entropy.

Let {|e;) 4} be the orthonormal basis for A and {|fx)z} be the orthonormal basis for B. Then we
decompose the state as spectral form |p) = Z?il ZZ’; ik lej) A 1 fx) 5

By unitary invariance, suppose M; = |e;) (e;] 4, and define

pi(p) = (ejlvalej) Z |‘Pﬂf’

Then

glp) = H(M ij ) logs (p; ()

I 1 .
Let h(p) = —plogy(p), h(p) = ~IF, and I(p) = =5 Let @y = . + iyp, then pj(p) =
d 2 2 Opj _ ap;
ko (T + i) dur = 2Tjks gy = 2Yik-

Therefore

99 _ 0g dpj  l4+Inp; 99 l+Inp;
Oz, ~ Op; Tk N In2 N

Then the lipschitz constant of g is

n?= sup Vg-Vg

(ple)<1

da dp 89 2
_;;<3%k> (5’yjk>

da 95 4(22, +42)
_ “\Tjk T I5k) , 2
=33 g+

da, I ’Sojk‘

=33 {4

=1k=
Note that Zk 1’(/0jk‘ ( ) v.g v.g_ (111222] lpj( )(1—}-111]?]'(@))2.

Since 0 < p; <1, we have Inp;(¢) < 0, hence Z;'lio pi(p)Inp;(p) <O0.
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Zp] )1 +1np;(p ZPJ 1+ 2Inp;(p) + (Inp;(¢))?)
_1+22pj )Inp;(e +ij )(Inp;(p ))?

<1+Zp] )(Inp;(¢))?

Thus,

1+ ij )(Inp;())?]

4
< (1112)2[1 + (Inda)?

< 8(log; dA)2

Proving Z;-IA pi(p)Inpi(p) < (Indy)? for dy > 3 takes some efforts and we will continue that later.

Consider any two unit vectors |¢) and [¢), assume S(p4) < S(¢4). If we choose the measurement
M to be along the eigenbasis of w4, H(M(p4)) = S(pa) and we have

S(Wa) = S(pa) < H(M(Pa)) — H(M(pa)) <nll|¥) —[#) ||
Thus the lipschitz constant of S(¢4) is upper bounded by v/8logs(d). O

From Levy’s lemma, we have

If we define 5 = ﬁ%’ then we have

1 (dadp — 1)042
Pr[H 1 dy) —a—p0] < —
AT(6) < Rga(0) = ) € o (s GRS
where dp > dg > 3 [HLWO06).
Experimentally, we can have the following result:

As the dimension of the Hilbert space increases, the chance of getting an almost maximally entan-
gled state increases (see Figure [1.6)).
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Probability

PHH(wa) <logz (da) — a — B] vs dj for fixed a = 0 and dg = 32 with n = 1000000

102 4

1073 4

1074 4

107° 4

107 4

da

Figure 1.6: Entropy vs d4
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Chapter 2

Levy’s family and observable
diameters

In this section, we will explore how the results from Hayden’s concentration of measure theorem can
be understood in terms of observable diameters from Gromov’s perspective and what properties it
reveals for entropy functions.

2.1 Observable diameters

Recall from previous sections, an arbitrary 1-Lipschitz function f : S — R concentrates near a
single value ag € R as strongly as the distance function does.
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Chapter 3

Seigel-Bargmann Space

In this chapter, we will collect ideas and other perspective we have understanding the concentration
of measure phenomenon. Especially with symmetric product of CP! and see how it relates to
Riemman surfaces and Seigel-Bargmann spaces.

w(z) ~ w(Az)
CpP™ < > P

A A

ze 2| w(z) =31 Ziz" | root of w(z)

g

cntl Sym,, (CP!)

Figure 3.1: Majorana stellar representation

Basically, there is a bijection between the complex projective space CP™ and the set of roots of a
polynomial of degree n.

We can use a symmetric group of permutations of n complex numbers (or S?) to represent the

CP™, that is, CP" = S2 x §2 x -+ x S2/8,,.

One might be interested in the random sampling over the Sym, (CP!) and the concentration of
measure phenomenon on that.

3.1 Majorana stellar representation of the quantum state

3.2 Space of complex valued functions and pure states
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