bugfix
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
@@ -140,6 +140,7 @@ $$
|
|||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
H(Y|X=x)&=-\sum_{y\in \mathcal{Y}} \log_2 \frac{1}{Pr(Y=y|X=x)} \\
|
H(Y|X=x)&=-\sum_{y\in \mathcal{Y}} \log_2 \frac{1}{Pr(Y=y|X=x)} \\
|
||||||
&=-\sum_{y\in \mathcal{Y}} Pr(Y=y|X=x) \log_2 Pr(Y=y|X=x) \\
|
&=-\sum_{y\in \mathcal{Y}} Pr(Y=y|X=x) \log_2 Pr(Y=y|X=x) \\
|
||||||
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
The conditional entropy $H(Y|X)$ is defined as:
|
The conditional entropy $H(Y|X)$ is defined as:
|
||||||
@@ -150,6 +151,7 @@ H(Y|X)&=\mathbb{E}_{x\sim X}[H(Y|X=x)] \\
|
|||||||
&=-\sum_{x\in \mathcal{X}} Pr(X=x)H(Y|X=x) \\
|
&=-\sum_{x\in \mathcal{X}} Pr(X=x)H(Y|X=x) \\
|
||||||
&=-\sum_{x\in \mathcal{X}, y\in \mathcal{Y}} Pr(X=x, Y=y) \log_2 Pr(Y=y|X=x) \\
|
&=-\sum_{x\in \mathcal{X}, y\in \mathcal{Y}} Pr(X=x, Y=y) \log_2 Pr(Y=y|X=x) \\
|
||||||
&=-\sum_{x\in \mathcal{X}, y\in \mathcal{Y}} Pr(x)\sum_{y\in \mathcal{Y}} Pr(Y=y|X=x) \log_2 Pr(Y=y|X=x) \\
|
&=-\sum_{x\in \mathcal{X}, y\in \mathcal{Y}} Pr(x)\sum_{y\in \mathcal{Y}} Pr(Y=y|X=x) \log_2 Pr(Y=y|X=x) \\
|
||||||
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Notes:
|
Notes:
|
||||||
|
|||||||
@@ -196,7 +196,7 @@ $\operatorname{Pr}(s_\mathcal{Z}|m_1, \cdots, m_{t-z}) = \operatorname{Pr}(U_1,
|
|||||||
|
|
||||||
Conclude similarly by the law of total probability.
|
Conclude similarly by the law of total probability.
|
||||||
|
|
||||||
$\operatorname{Pr}(s_\mathcal{Z}|m_1, \cdots, m_{t-z}) = \operatorname{Pr}(s_\mathcal{Z}) \implies I(S_\mathcal{Z}; M_1, \cdots, M_{t-z}) = 0.
|
$\operatorname{Pr}(s_\mathcal{Z}|m_1, \cdots, m_{t-z}) = \operatorname{Pr}(s_\mathcal{Z}) \implies I(S_\mathcal{Z}; M_1, \cdots, M_{t-z}) = 0$.
|
||||||
|
|
||||||
### Conditional mutual information
|
### Conditional mutual information
|
||||||
|
|
||||||
@@ -246,14 +246,14 @@ A: Fix any $\mathcal{T} = \{i_1, \cdots, i_t\} \subseteq [n]$ of size $t$, and l
|
|||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
H(M) &= I(M; S_\mathcal{T}) + H(M|S_\mathcal{T}) \text{(by def. of mutual information)}\\
|
H(M) &= I(M; S_\mathcal{T}) + H(M|S_\mathcal{T}) \text{(by def. of mutual information)}\\
|
||||||
&= I(M; S_\mathcal{T}) \text{(since S_\mathcal{T} suffice to decode M)}\\
|
&= I(M; S_\mathcal{T}) \text{(since }S_\mathcal{T}\text{ suffice to decode M)}\\
|
||||||
&= I(M; S_{i_t}, S_\mathcal{Z}) \text{(since S_\mathcal{T} = S_\mathcal{Z} ∪ S_{i_t})}\\
|
&= I(M; S_{i_t}, S_\mathcal{Z}) \text{(since }S_\mathcal{T} = S_\mathcal{Z} ∪ S_{i_t})\\
|
||||||
&= I(M; S_{i_t}|S_\mathcal{Z}) + I(M; S_\mathcal{Z}) \text{(chain rule)}\\
|
&= I(M; S_{i_t}|S_\mathcal{Z}) + I(M; S_\mathcal{Z}) \text{(chain rule)}\\
|
||||||
&= I(M; S_{i_t}|S_\mathcal{Z}) \text{(since \mathcal{Z} ≤ z, it reveals nothing about M)}\\
|
&= I(M; S_{i_t}|S_\mathcal{Z}) \text{(since }\mathcal{Z}\leq z \text{, it reveals nothing about M)}\\
|
||||||
&= I(S_{i_t}; M|S_\mathcal{Z}) \text{(symmetry of mutual information)}\\
|
&= I(S_{i_t}; M|S_\mathcal{Z}) \text{(symmetry of mutual information)}\\
|
||||||
&= H(S_{i_t}|S_\mathcal{Z}) - H(S_{i_t}|M,S_\mathcal{Z}) \text{(def. of conditional mutual information)}\\
|
&= H(S_{i_t}|S_\mathcal{Z}) - H(S_{i_t}|M,S_\mathcal{Z}) \text{(def. of conditional mutual information)}\\
|
||||||
\leq H(S_{i_t}|S_\mathcal{Z}) \text{(entropy is non-negative)}\\
|
&\leq H(S_{i_t}|S_\mathcal{Z}) \text{(entropy is non-negative)}\\
|
||||||
\leq H(S_{i_t}|S_\mathcal{Z}) \text{(conditioning reduces entropy). \\
|
&\leq H(S_{i_t}|S_\mathcal{Z}) \text{(conditioning reduces entropy)} \\
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|||||||
125
content/Math4201/Math4201_L35.md
Normal file
125
content/Math4201/Math4201_L35.md
Normal file
@@ -0,0 +1,125 @@
|
|||||||
|
# Math4201 Topology I (Lecture 35)
|
||||||
|
|
||||||
|
## Countability axioms
|
||||||
|
|
||||||
|
### Kolmogorov classification
|
||||||
|
|
||||||
|
Consider the topological space $X$.
|
||||||
|
|
||||||
|
$X$ is $T_0$ means for every pair of points $x,y\in X$, $x\neq y$, there is one of $x$ and $y$ is in an open set $U$ containing $x$ but not $y$.
|
||||||
|
|
||||||
|
$X$ is $T_1$ means for every pair of points $x,y\in X$, $x\neq y$, each of them have a open set $U$ and $V$ such that $x\in U$ and $y\in V$ and $x\notin V$ and $y\notin U$. (singleton sets are closed)
|
||||||
|
|
||||||
|
$X$ is $T_2$ means for every pair of points $x,y\in X$, $x\neq y$, there exists disjoint open sets $U$ and $V$ such that $x\in U$ and $y\in V$. (Hausdorff)
|
||||||
|
|
||||||
|
$X$ is $T_3$ means that $X$ is regular: for any $x\in X$ and any close set $A\subseteq X$ such that $x\notin A$, there are **disjoint open sets** $U,V$ such that $x\in U$ and $A\subseteq V$.
|
||||||
|
|
||||||
|
$X$ is $T_4$ means that $X$ is normal: for any disjoint closed sets, $A,B\subseteq X$, there are **disjoint open sets** $U,V$ such that $A\subseteq U$ and $B\subseteq V$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Example</summary>
|
||||||
|
|
||||||
|
Let $\mathbb{R}_{\ell}$ with lower limit topology.
|
||||||
|
|
||||||
|
$\mathbb{R}_{\ell}$ is normal since for any disjoint closed sets, $A,B\subseteq \mathbb{R}_{\ell}$, $x\in A$ and $B$ is closed and doesn't contain $x$. Then there exists $\epsilon_x>0$ such that $[x,x+\epsilon_x)\subseteq A$ and does not intersect $B$.
|
||||||
|
|
||||||
|
Therefore, there exists $\delta_y>0$ such that $[y,y+\delta_y)\subseteq B$ and does not intersect $A$.
|
||||||
|
|
||||||
|
Let $U=\bigcup_{x\in A}[x,x+\epsilon_x)$ is open and contains $A$.
|
||||||
|
|
||||||
|
$V=\bigcup_{y\in B}[y,y+\delta_y)$ is open and contains $B$.
|
||||||
|
|
||||||
|
We show that $U$ and $V$ are disjoint.
|
||||||
|
|
||||||
|
If $U\cap V\neq \emptyset$, then there exists $x\in A$ and $Y\in B$ such that $[x,x+\epsilon_x)\cap [y,y+\delta_y)\neq \emptyset$.
|
||||||
|
|
||||||
|
This is a contradiction since $[x,x+\epsilon_x)\subseteq A$ and $[y,y+\delta_y)\subseteq B$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Theorem Every metric space is normal
|
||||||
|
|
||||||
|
Use the similar proof above.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
Let $A,B\subseteq X$ be closed.
|
||||||
|
|
||||||
|
Since $B$ is closed, for any $x\in A$, there exists $\epsilon_x>0$ such that $B_{\epsilon_x}(x)\subseteq B$.
|
||||||
|
|
||||||
|
Since $A$ is closed, for any $y\in B$, there exists $\delta_y>0$ such that $A_{\delta_y}(y)\subseteq A$.
|
||||||
|
|
||||||
|
Let $U=\bigcup_{x\in A}B_{\epsilon_x/2}(x)$ and $V=\bigcup_{y\in B}B_{\delta_y/2}(y)$.
|
||||||
|
|
||||||
|
We show that $U$ and $V$ are disjoint.
|
||||||
|
|
||||||
|
If $U\cap V\neq \emptyset$, then there exists $x\in A$ and $Y\in B$ such that $B_{\epsilon_x/2}(x)\cap B_{\delta_y/2}(y)\neq \emptyset$.
|
||||||
|
|
||||||
|
Consider $z\in B_{\epsilon_x/2}(x)\cap B_{\delta_y/2}(y)$. Then $d(x,z)<\epsilon_x/2$ and $d(y,z)<\delta_y/2$. Therefore $d(x,y)\leq d(x,z)+d(z,y)<\epsilon_x/2+\delta_y/2$.
|
||||||
|
|
||||||
|
If $\delta_y<\epsilon_x$, then $d(x,y)<\delta_y/2+\delta_y/2=\delta_y$. Therefore $x\in B_{\delta_y}(y)\subseteq A$. This is a contradiction since $U\cap B=\emptyset$.
|
||||||
|
|
||||||
|
If $\epsilon_x<\delta_y$, then $d(x,y)<\epsilon_x/2+\epsilon_x/2=\epsilon_x$. Therefore $y\in B_{\epsilon_x}(x)\subseteq B$. This is a contradiction since $V\cap A=\emptyset$.
|
||||||
|
|
||||||
|
Therefore, $U$ and $V$ are disjoint.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Lemma fo regular topological space
|
||||||
|
|
||||||
|
$X$ is regular topological space if and only if for any $x\in X$ and any open neighborhood $U$ of $x$, there is open neighborhood $V$ of $x$ such that $\overline{V}\subseteq U$.
|
||||||
|
|
||||||
|
#### Lemma of normal topological space
|
||||||
|
|
||||||
|
$X$ is a normal topological space if and only if for any $A\subseteq X$ closed and any open neighborhood $U$ of $A$, there is open neighborhood $V$ of $A$ such that $\overline{V}\subseteq U$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
$\implies$
|
||||||
|
|
||||||
|
Let $A$ and $U$ are given as in the statement.
|
||||||
|
|
||||||
|
So $A$ and $(X-U)$ are disjoint closed.
|
||||||
|
|
||||||
|
Since $X$ is normal and $A\subseteq V\subseteq X$ and $V\cap W=\emptyset$. $X-U\subseteq W\subseteq X$. where $W$ is open in $X$.
|
||||||
|
|
||||||
|
And $\overline{V}\subseteq (X-W)\subseteq U$.
|
||||||
|
|
||||||
|
And $A\subseteq V$.
|
||||||
|
|
||||||
|
The proof of reverse direction is similar.
|
||||||
|
|
||||||
|
Let $A,B$ be disjoint and closed.
|
||||||
|
|
||||||
|
Then $A\subseteq U\coloneqq X-B\subseteq X$ and $X-B$ is open in $X$.
|
||||||
|
|
||||||
|
Apply the assumption to find $A\subseteq V\subseteq X$ and $V$ is open in $X$ and $\overline{V}\subseteq U\coloneqq X-B$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Proposition of regular and Hausdorff on subspaces
|
||||||
|
|
||||||
|
1. If $X$ is a regular topological space, and $Y$ is a subspace. Then $Y$ with induced topology is regular. (same holds for Hausdorff)
|
||||||
|
2. If $\{X_\alpha\}$ is a collection of regular topological spaces, then their product with the product topology is regular. (same holds for Hausdorff)
|
||||||
|
|
||||||
|
> [!CAUTION]
|
||||||
|
>
|
||||||
|
> The above does not hold for normal.
|
||||||
|
|
||||||
|
Recall that $\mathbb{R}_{\ell}$ with lower limit topology is normal. But $\mathbb{R}_{\ell}\times \mathbb{R}_{\ell}$ with product topology is not normal. (In problem set 11)
|
||||||
|
|
||||||
|
This shows that $\mathbb{R}_{\ell}$ is not metrizable. Otherwise $\mathbb{R}_{\ell}\times \mathbb{R}_{\ell}$ would be metrizable. Which could implies that $\mathbb{R}_{\ell}$ is normal.
|
||||||
|
|
||||||
|
#### Theorem of metrizability
|
||||||
|
|
||||||
|
If $X$ is normal and second countable, then $X$ is metrizable.
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
>
|
||||||
|
> - Every metrizable topological space is normal.
|
||||||
|
> - Every metrizable space is first countable.
|
||||||
|
> - But there are some metrizable space that is not second countable.
|
||||||
|
>
|
||||||
|
> Note that if $X$ is normal and first countable, then it is not necessarily metrizable. (Example $\mathbb{R}_{\ell}$)
|
||||||
@@ -38,4 +38,5 @@ export default {
|
|||||||
Math4201_L32: "Topology I (Lecture 32)",
|
Math4201_L32: "Topology I (Lecture 32)",
|
||||||
Math4201_L33: "Topology I (Lecture 33)",
|
Math4201_L33: "Topology I (Lecture 33)",
|
||||||
Math4201_L34: "Topology I (Lecture 34)",
|
Math4201_L34: "Topology I (Lecture 34)",
|
||||||
|
Math4201_L35: "Topology I (Lecture 35)",
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user