From 0161388082675f71b646fed27e3b15ca9e5327d8 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Fri, 23 Jan 2026 14:51:09 -0600 Subject: [PATCH] updates --- content/Math4302/Math4302_L5.md | 106 ++++++++++++++++++++++++++++++++ content/Math4302/_meta.js | 1 + 2 files changed, 107 insertions(+) create mode 100644 content/Math4302/Math4302_L5.md diff --git a/content/Math4302/Math4302_L5.md b/content/Math4302/Math4302_L5.md new file mode 100644 index 0000000..abf6dc1 --- /dev/null +++ b/content/Math4302/Math4302_L5.md @@ -0,0 +1,106 @@ +# Math4302 Modern Algebra (Lecture 5) + +## Groups + +### Subgroups + +A subset $H\subseteq G$ is a subgroup of $G$ if + +- $e\in H$ +- $\forall a,b\in H, a b\in H$ +- $a\in H\implies a^{-1}\in H$ + +_$H$ with $*$ is a group_ + +We denote as $H\leq G$. + +
+Example + +For an arbitrary group $(G,*)$, + +$(\{e\},*)$ and $(G,*)$ are always subgroups. + +--- + +$(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$. + +--- + +Non-example: + +$(\mathbb{Z}_+,+)$ is not a subgroup of $(\mathbb{Z},+)$. + +--- + +Subgroup of $\mathbb{Z}_4$: + +$(\{0,1,2,3\},+)$ (if $1\in H$, $3\in H$) + +$(\{0,2\},+)$ + +$(\{0\},+)$ + +--- + +Subgroup of $\mathbb{Z}_5$: + +$(\{0,1,2,3,4\},+)$ + +$(\{0\},+)$ + +_Cyclic group with prime order has only two subgroups_ + +--- + +Let $D_n$ denote the group of symmetries of a regular $n$-gon. (keep adjacent points pairs). + +$$ +D_n=\{\sigma\in S_n\mid i,j\text{ are adjacent } \iff \sigma(i),\sigma(j)\text{ are adjacent }\} +$$ + +$$ +\begin{pmatrix} +1&2&3&4\\ +2&3&1&4 +\end{pmatrix}\notin D_4 +$$ + +$D_4$ has order $8$ and $S_4$ has order $24$. + +$|D_n|=2n$. ($n$ option to rotation, $n$ option to reflection. For $\sigma(1)$ we have $n$ option, $\sigma(2)$ has 2 option where the remaining only has 1 option.) + +Since $1-4$ is not adjacent in such permutation. + +$D_n\leq S_n$ ($S_n$ is the symmetric group of $n$ elements). + +
+ +#### Lemma of subgroups + +If $H\subseteq G$ is a non-empty subset of a group $G$. + +then ($H$ is a subgroup of $G$) if and only if ($a,b\in H\implies ab^-1\in H$). + +
+Proof + +If $H$ is subgroup, then $e\in H$, so $H$ is non-empty and if $a,b\in H$, then $b^{-1}\in H$, so $ab^{-1}\in H$. + +--- + +If $H$ has the given property, then $H$ is non-empty and if $a,b\in H$, then $ab^-1\in H$, so + +- There is some $a,a\in H$, $aa^{-1}\in H$, so $e\in H$. +- If $b\in H$, then $e\in H$, so $eb^{-1}\in H$, so $b^{-1}\in H$. +- If $b,c\in H$, then $c^{-1}$, so $bc^{-1}^{-1}\in H$, so $bc\in H$. + +
+ +#### Cyclic group + +$G$ is cyclic if $G$ is a subgroup generated by $a\in G$. (may be infinite) + +$\mathbb{Z}_n\leq D_n\leq S_n$. + +Cyclic group is always abelian. diff --git a/content/Math4302/_meta.js b/content/Math4302/_meta.js index 276a602..df576d2 100644 --- a/content/Math4302/_meta.js +++ b/content/Math4302/_meta.js @@ -7,4 +7,5 @@ export default { Math4302_L2: "Modern Algebra (Lecture 2)", Math4302_L3: "Modern Algebra (Lecture 3)", Math4302_L4: "Modern Algebra (Lecture 4)", + Math4302_L5: "Modern Algebra (Lecture 5)", }