updates
This commit is contained in:
@@ -22,4 +22,10 @@ $$
|
||||
|
||||
If $Z_0=0$, then count $\infty$ as root.
|
||||
|
||||
Using stereographic projection of each root we can get a unordered collection of $S^2$. Example: $\mathbb{C}P=S^2$, $\mathbb{C}p^2=S^2\times S^2\setminus S_2$ where $S_2$ is symmetric group.
|
||||
Using stereographic projection of each root we can get a unordered collection of $S^2$. Example: $\mathbb{C}P=S^2$, $\mathbb{C}p^2=S^2\times S^2\setminus S_2$ where $S_2$ is symmetric group.
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> TODO: Check more definition from different area of mathematics (algebraic geometry, complex analysis, etc.) of the Majorana representation of quantum states.
|
||||
>
|
||||
> Read Chapter 5 and 6 of [Geometry of Quantum states](https://www.cambridge.org/core/books/geometry-of-quantum-states/46B62FE3F9DA6E0B4EDDAE653F61ED8C) for more details.
|
||||
Reference in New Issue
Block a user