format updates
This commit is contained in:
@@ -30,7 +30,8 @@ If $S=\bigcup_{n=1}^{\infty} I_n$, $T=\bigcup_{n=1}^{\infty} J_n$, where $I_n$ a
|
||||
|
||||
Let $S$ be a closed, bounded set in $\mathbb{R}$, and $S_1\subseteq S_2\subseteq \ldots$, and $S=\bigcup_{n=1}^{\infty} S_n$. Then $\lim_{k\to\infty} c_e(S_k)=c_e(S)$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof of Osgood's Lemma</summary>
|
||||
|
||||
Trivial that $c_e(S_k)\leq c_e(S)$.
|
||||
|
||||
@@ -70,7 +71,7 @@ c_e(S)&\leq c_e(U)\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Convergence Theorems for sequences of functions
|
||||
|
||||
@@ -96,7 +97,8 @@ $$
|
||||
\lim_{n\to\infty}\int_a^b f_n(x)\ dx=\int_a^b f(x)\ dx
|
||||
$$
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof of Arzela-Osgood Theorem (incomplete)</summary>
|
||||
|
||||
Define $\Gamma_{\alpha}=\{x:\forall m\in \mathbb{N} \textup{ and }\forall \delta>0, \exists n\geq m \textup{ s.t. } |y-x|<\delta \textup{ and } |f_n(y)-f_m(y)|>\alpha\}$.
|
||||
|
||||
@@ -105,3 +107,4 @@ _$\Gamma_{\alpha}$ is the negation of $(\alpha,\delta)$ definition of limit._
|
||||
$\Gamma_{\alpha}$ is closed and nowhere dense.
|
||||
|
||||
Continue on next lecture.
|
||||
</details>
|
||||
Reference in New Issue
Block a user