format updates

This commit is contained in:
Zheyuan Wu
2025-09-24 01:27:46 -05:00
parent e59ef423f3
commit 143d77e7f9
16 changed files with 401 additions and 79 deletions

View File

@@ -30,7 +30,8 @@ If $S=\bigcup_{n=1}^{\infty} I_n$, $T=\bigcup_{n=1}^{\infty} J_n$, where $I_n$ a
Let $S$ be a closed, bounded set in $\mathbb{R}$, and $S_1\subseteq S_2\subseteq \ldots$, and $S=\bigcup_{n=1}^{\infty} S_n$. Then $\lim_{k\to\infty} c_e(S_k)=c_e(S)$.
Proof:
<details>
<summary>Proof of Osgood's Lemma</summary>
Trivial that $c_e(S_k)\leq c_e(S)$.
@@ -70,7 +71,7 @@ c_e(S)&\leq c_e(U)\\
\end{aligned}
$$
QED
</details>
### Convergence Theorems for sequences of functions
@@ -96,7 +97,8 @@ $$
\lim_{n\to\infty}\int_a^b f_n(x)\ dx=\int_a^b f(x)\ dx
$$
Proof:
<details>
<summary>Proof of Arzela-Osgood Theorem (incomplete)</summary>
Define $\Gamma_{\alpha}=\{x:\forall m\in \mathbb{N} \textup{ and }\forall \delta>0, \exists n\geq m \textup{ s.t. } |y-x|<\delta \textup{ and } |f_n(y)-f_m(y)|>\alpha\}$.
@@ -105,3 +107,4 @@ _$\Gamma_{\alpha}$ is the negation of $(\alpha,\delta)$ definition of limit._
$\Gamma_{\alpha}$ is closed and nowhere dense.
Continue on next lecture.
</details>