format updates

This commit is contained in:
Zheyuan Wu
2025-09-24 01:27:46 -05:00
parent e59ef423f3
commit 143d77e7f9
16 changed files with 401 additions and 79 deletions

View File

@@ -31,7 +31,8 @@ $$
> $$m_e\left(S\cap \bigcup_{j=1}^{\infty} I_j\right) = \sum_{j=1}^{\infty} m_e(S\cap I_j)$$
> Proved on Friday
Proof:
<details>
<summary>Proof</summary>
$\implies$ If Lebesgue criterion holds for $S$, then for any $X$ of finite outer measure,
@@ -72,7 +73,7 @@ m_e(X)&\leq m_e(X\cap S)+m_e(S^c\cap X)\\
\end{aligned}
$$
QED
</details>
### Revisit Borel's criterion
@@ -88,7 +89,8 @@ $$
m_e(S)=\sum_{j=1}^{\infty} m_e(S_j)
$$
Proof:
<details>
<summary>Proof</summary>
First we prove $m_e(\bigcup_{j=1}^{\infty} S_j)=\sum_{j=1}^{\infty} m(S_j)$ by induction.
@@ -116,16 +118,17 @@ Therefore, $\sum_{j=1}^{\infty} m(S_j)\leq m_e(S)\leq \sum_{j=1}^{\infty} m(S_j)
So $S$ is measurable.
QED
</details>
#### Proposition 5.9 (Preview)
Any finite union (and intersection) of measurable sets is measurable.
Proof:
<details>
<summary>Proof</summary>
Let $S_1, S_2$ be measurable sets.
We prove by verifying the Caratheodory's criteria for $S_1\cup S_2$.
QED
</details>