format updates
This commit is contained in:
@@ -31,7 +31,8 @@ $$
|
||||
> $$m_e\left(S\cap \bigcup_{j=1}^{\infty} I_j\right) = \sum_{j=1}^{\infty} m_e(S\cap I_j)$$
|
||||
> Proved on Friday
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$\implies$ If Lebesgue criterion holds for $S$, then for any $X$ of finite outer measure,
|
||||
|
||||
@@ -72,7 +73,7 @@ m_e(X)&\leq m_e(X\cap S)+m_e(S^c\cap X)\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Revisit Borel's criterion
|
||||
|
||||
@@ -88,7 +89,8 @@ $$
|
||||
m_e(S)=\sum_{j=1}^{\infty} m_e(S_j)
|
||||
$$
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
First we prove $m_e(\bigcup_{j=1}^{\infty} S_j)=\sum_{j=1}^{\infty} m(S_j)$ by induction.
|
||||
|
||||
@@ -116,16 +118,17 @@ Therefore, $\sum_{j=1}^{\infty} m(S_j)\leq m_e(S)\leq \sum_{j=1}^{\infty} m(S_j)
|
||||
|
||||
So $S$ is measurable.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Proposition 5.9 (Preview)
|
||||
|
||||
Any finite union (and intersection) of measurable sets is measurable.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $S_1, S_2$ be measurable sets.
|
||||
|
||||
We prove by verifying the Caratheodory's criteria for $S_1\cup S_2$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
Reference in New Issue
Block a user