updates
This commit is contained in:
@@ -1,2 +1,130 @@
|
||||
# Math4302 Modern Algebra (Lecture 1)
|
||||
|
||||
_Skip section 0_
|
||||
|
||||
## Group and subgroups
|
||||
|
||||
### Group
|
||||
|
||||
#### Definition of binary operations
|
||||
|
||||
A binary operation (usually denoted by $*$) on a set $X$ is a function from $X\times X$ to $X$.
|
||||
|
||||
<details>
|
||||
<summary>Example of binary relations</summary>
|
||||
|
||||
$+$ is a binary operation on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
|
||||
$\cdot$ is a binary operation on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
|
||||
division is not a binary operation on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
|
||||
Generally, we can define a binary operation over sets whatever we want.
|
||||
|
||||
Let $X=\{a,b,c\}$ and we can define the table for binary operation as follows:
|
||||
|
||||
|*| a | b | c |
|
||||
|---|---|---|---|
|
||||
|a| a | b | b |
|
||||
|b| b | c | c |
|
||||
|c| a | b | c |
|
||||
|
||||
If we let $X$ be the set of all functions from $\mathbb{R}$ to $\mathbb{R}$.
|
||||
|
||||
then $(f+g)(x)=f(x)+g(x)$,
|
||||
|
||||
$(f g)(x)=f(x)\circ g(x)$,
|
||||
|
||||
$(f\circ g)(x)=f(g(x))$, are also binary operations.
|
||||
|
||||
</details>
|
||||
|
||||
#### Definition of Commutative binary operations
|
||||
|
||||
A binary operation $*$ in a set $X$ is commutative if $a*b=b*a$ for all $a,b\in X$.
|
||||
|
||||
|
||||
> [!TIP]
|
||||
>
|
||||
> Commutative basically means the table is symmetric on diagonal.
|
||||
|
||||
<details>
|
||||
<summary>Example of non-commutative binary operations</summary>
|
||||
|
||||
$(f\circ g)(x)=f(g(x))$, is not generally commutative, consider constant functions $f(x)=1$ and $g(x)=0$.
|
||||
|
||||
</details>
|
||||
|
||||
#### Definition of Associative binary operations
|
||||
|
||||
A binary operation $*$ in a set $X$ is associative if $(a*b)*c=a*(b*c)$ for all $a,b,c\in X$.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
a*((b*c)*d)&=a*(b*(c*d))\quad\text{apply the definition to b,c,d}\\
|
||||
&=a*(b*(c*d))\quad \text{apply the definition to a,b, (c*d)}\\
|
||||
&=(a*b)*(c*d)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>Example of non-associative binary operations</summary>
|
||||
|
||||
Suppose $X=\{a,b,c\}$
|
||||
|
||||
|*| a | b | c |
|
||||
|---|---|---|---|
|
||||
|a| a | b | b |
|
||||
|b| b | c | c |
|
||||
|c| a | b | c |
|
||||
|
||||
is not associative, take $a,b,c$ as examples.
|
||||
|
||||
</details>
|
||||
|
||||
#### Theorem forAssociativity of Composition
|
||||
|
||||
(Associativity of Composition) Let S be a set and let $f,g$ and $h$ be functions from S to S. Then $(f\circ g)\circ h=f\circ(g\circ h)$.
|
||||
|
||||
#### Definition of Identity element
|
||||
|
||||
An element $e\in X$ is called identity element if $a*e=e*a=a$ for all $a\in X$.
|
||||
|
||||
#### Uniqueness of identity element
|
||||
|
||||
If $X$ has an identity element, then it is unique.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose $e_1$ and $e_2$ are identity elements of $X$. Then $e_1*e_2=e_2*e_1=e_1=e_2$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Example of identity element</summary>
|
||||
|
||||
$0$ is the identity element of $+$ on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
|
||||
$1$ is the identity element of $\cdot$ on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
|
||||
identity zero $f(x)=0$ is the identity element of $(f+g)(x)=f(x)+g(x)$.
|
||||
|
||||
identity one $f(x)=1$ is the identity element of $(f\circ g)(x)=f(g(x))$.
|
||||
|
||||
identity function $f(x)=x$ is the identity element of $(f\circ g)(x)=f(g(x))$.
|
||||
|
||||
</details>
|
||||
|
||||
> [!WARNING]
|
||||
>
|
||||
> Not all binary operations have identity elements.
|
||||
>
|
||||
> Consider
|
||||
>
|
||||
> Suppose $X=\{a,b,c\}$
|
||||
> |*| a | b | c |
|
||||
|---|---|---|---|
|
||||
|a| a | b | b |
|
||||
|b| b | c | c |
|
||||
|c| a | b | c |
|
||||
|
||||
Reference in New Issue
Block a user