diff --git a/content/Math4201/Math4201_L1.md b/content/Math4201/Math4201_L1.md index 138ca1b..037ad4e 100644 --- a/content/Math4201/Math4201_L1.md +++ b/content/Math4201/Math4201_L1.md @@ -1,3 +1,3 @@ -# Math4201 Lecture 1 +# Math4201 Topology I (Lecture 1) Going through the syllabus. \ No newline at end of file diff --git a/content/Math4201/Math4201_L10.md b/content/Math4201/Math4201_L10.md index 4d03fdd..14a7870 100644 --- a/content/Math4201/Math4201_L10.md +++ b/content/Math4201/Math4201_L10.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 10 +# Math4201 Topology I (Lecture 10) ## Continuity @@ -6,7 +6,6 @@ Let $X,Y$ be topological spaces and $f:X\to Y$. For any $x\in X$ and any open neighborhood $V$ of $f(x)$ in $Y$, $f^{-1}(V)$ contains an open neighborhood of $x$ in $X$. - #### Lemma for continuous functions Let $f:X\to Y$ be a function, then: diff --git a/content/Math4201/Math4201_L11.md b/content/Math4201/Math4201_L11.md new file mode 100644 index 0000000..b287ca5 --- /dev/null +++ b/content/Math4201/Math4201_L11.md @@ -0,0 +1,113 @@ +# Math4201 Topology I (Lecture 11) + +> [!NOTE] +> +> Q: Let $f:X\to Y$ be a continuous bijection. Is it true that $f^{-1}$ is continuous? +> +> A: No. Consider $X=[0,2\pi)$ and $Y=\mathbb{S}^1$ with standard topology in $\mathbb{R}^2$. +> +> Let $f\coloneq \theta\in [0,2\pi)\to (\cos \theta, \sin \theta)\in \mathbb{S}^1$ is a continuous bijection. ($\forall f^{-1}(V)$ is open in $X$) +> +> But $f^{-1}$ is not continuous, consider the open set in $X, U=[0,\pi)$. Then $f^{-1}(U)=[0,\pi)$ is not open in $Y$. + +## Continuous functions + +### Constructing continuous functions + +#### Theorem composition of continuous functions is continuous + +Let $X,Y,Z$ be topological spaces, $f:X\to Y$ is continuous, and $g:Y\to Z$ is continuous. Then $f\circ g:X\to Z$ is continuous. + +
+Proof + +Let $U\subseteq Z$ be open. Then $g^{-1}(U)$ is open in $Y$. Since $f$ is continuous, $f^{-1}(g^{-1}(U))$ is open in $X$. + +
+ +#### Pasting lemma + +Let $X$ be a topological space and $X=Z_1\cup Z_2$ with $Z_1,Z_2$ closed in $X$ equipped with the subspace topology. (may be not disjoint) + +Let $g_1:Z_1\to Y$ and $g_2:Z_2\to Y$ be two continuous maps and $\forall x\in Z_1\cap Z_2$, $g_1(x)=g_2(x)$. + +Define $f:X\to Y$ by $f(x)\begin{cases}g_1(x), & x\in Z_1 \\ g_2(x), & x\in Z_2\end{cases}$ is continuous. + +
+Proof + +Let $U\subseteq Y$ be open. Then $f^{-1}(U)=g_1^{-1}(U)\cup g_2^{-1}(U)$. + +$g_1^{-1}(U)$ and $g_2^{-1}(U)$ are open in $Z_1$ and $Z_2$ respectively. + +> It's a bit annoying to show that $g_1^{-1}(U)$ and $g_2^{-1}(U)$ are open in $X$. + +Different way. Consider the definition of continuous functions using closed sets. + +If $W\subseteq X$ is closed, then $W=Z_1\cap Z_2$ is closed in $X$. + +So $f^{-1}(W)=g_1^{-1}(W)\cup g_2^{-1}(W)$ is closed in $Z_1$ and $Z_2$ respectively. + +Note that $Z_1$ and $Z_2$ are closed in $X$, so $g_1^{-1}(W)$ and $g_2^{-1}(W)$ are closed in $X$. [closed in closed subspace lemma](https://notenextra.trance-0.com/Math4201/Math4201_L7#lemma-of-closed-in-closed-subspace) + +So $f^{-1}(W)$ is closed in $X$. + +
+ +Let $X$ be a topological space and $X=U_1\cup U_2$ with $U_1,U_2$ open in $X$ equipped with the subspace topology. + +With $g_1:U_1\to Y$ and $g_2:U_2\to Y$ be two continuous maps and $\forall x\in U_1\cap U_2$, $g_1(x)=g_2(x)$. + +Then $f:X\to Y$ by $f(x)\begin{cases}g_1(x), & x\in U_1 \\ g_2(x), & x\in U_2\end{cases}$ is continuous. + +
+Proof + +Let $U\subseteq Y$ be open. Then $f^{-1}(U)=g_1^{-1}(U)\cup g_2^{-1}(U)$. + +$g_1^{-1}(U)$ and $g_2^{-1}(U)$ are open in $U_1$ and $U_2$ respectively. + +Apply the [open in open subspace lemma](https://notenextra.trance-0.com/Math4201/Math4201_L6#lemma-of-open-set-in-subspace-topology) + +So $f^{-1}(U)$ is open in $X$. + +
+ +The open set version holds more generally. + +Let $X$ be a topological space and $X=\bigcup_{\alpha\in I} U_\alpha$ with $U_\alpha$ open in $X$ equipped with the subspace topology. + +Let $g_\alpha:U_\alpha\to Y$ be two continuous maps and $\forall x\in U_\alpha\cap U_\beta$, $g_\alpha(x)=g_\beta(x)$. + +Then $f:X\to Y$ by $f(x)=g_\alpha(x), \text{if } x\in U_\alpha$ is continuous. + +#### Continuous functions on different codomains + +Let $f:X\to Y$ and $g:X\to Z$ be two continuous maps of topological spaces. + +Let $H:X\to Y\times Z$, where $Y\times Z$ is equipped with the product topology, be defined by $H(x)=(f(x),g(x))$. Then $H$ is continuous. + +> A stronger version of this theorem is that $f:X\to Y$ and $g:X\to Z$ are continuous maps of topological spaces if and only if $H:X\to Y\times Z$ is continuous. + +
+Proof + +It is sufficient to check the basis elements of the topology on $Y\times Z$. + +The basis for the topology on $Y\times Z$ is $U\times V\subseteq Y\times Z$, where $U\subseteq Y$ and $V\subseteq Z$ are open. This form a basis for the topology on $Y\times Z$. + +We only need to show that $H^{-1}(U\times V)$ is open in $X$. + +Let $H^{-1}(U\times V)=\{x\in X | (f(x),g(x))\in U\times V\}$. + +So $H^{-1}(U\times V)=f^{-1}(U)\cap g^{-1}(V)$. + +Since $f$ and $g$ are continuous, $f^{-1}(U)$ and $g^{-1}(V)$ are open in $X$. + +So $H^{-1}(U\times V)$ is open in $X$. + +
+ +Exercise: Prove the stronger version of the theorem, + +If $H:X\to Y\times Z$ is continuous, then $f:X\to Y$ and $g:X\to Z$ are continuous. diff --git a/content/Math4201/Math4201_L2.md b/content/Math4201/Math4201_L2.md index 3f9c771..3048040 100644 --- a/content/Math4201/Math4201_L2.md +++ b/content/Math4201/Math4201_L2.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 2 +# Math4201 Topology I (Lecture 2) ## Topology diff --git a/content/Math4201/Math4201_L3.md b/content/Math4201/Math4201_L3.md index a042d8c..bb6e4bb 100644 --- a/content/Math4201/Math4201_L3.md +++ b/content/Math4201/Math4201_L3.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 3 +# Math4201 Topology I (Lecture 3) ## Recall form last lecture diff --git a/content/Math4201/Math4201_L4.md b/content/Math4201/Math4201_L4.md index 559b9ac..5f33bc7 100644 --- a/content/Math4201/Math4201_L4.md +++ b/content/Math4201/Math4201_L4.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 4 +# Math4201 Topology I (Lecture 4) ## Recall from last lecture diff --git a/content/Math4201/Math4201_L5.md b/content/Math4201/Math4201_L5.md index 3c4a9a2..2f4eab6 100644 --- a/content/Math4201/Math4201_L5.md +++ b/content/Math4201/Math4201_L5.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 5 Bonus +# Math4201 Topology I (Lecture 5 Bonus) ## Comparison of two types of topologies diff --git a/content/Math4201/Math4201_L6.md b/content/Math4201/Math4201_L6.md index edefdd3..80aaac6 100644 --- a/content/Math4201/Math4201_L6.md +++ b/content/Math4201/Math4201_L6.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 6 +# Math4201 Topology I (Lecture 6) ## Product topology diff --git a/content/Math4201/Math4201_L7.md b/content/Math4201/Math4201_L7.md index 85d1e3d..231fe91 100644 --- a/content/Math4201/Math4201_L7.md +++ b/content/Math4201/Math4201_L7.md @@ -1,4 +1,4 @@ -# Math 4201 Lecture 7 +# Math 4201 Topology I (Lecture 7) ## Review from last lecture diff --git a/content/Math4201/Math4201_L8.md b/content/Math4201/Math4201_L8.md index 1c9202c..5e7bb9f 100644 --- a/content/Math4201/Math4201_L8.md +++ b/content/Math4201/Math4201_L8.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 8 +# Math4201 Topology I (Lecture 8) Recall from real analysis, a set is closed if and only if it has limit points. diff --git a/content/Math4201/Math4201_L9.md b/content/Math4201/Math4201_L9.md index f4fe894..9ff68a4 100644 --- a/content/Math4201/Math4201_L9.md +++ b/content/Math4201/Math4201_L9.md @@ -1,4 +1,4 @@ -# Math4201 Lecture 9 +# Math4201 Topology I (Lecture 9) ## Convergence of sequences diff --git a/content/Math4201/_meta.js b/content/Math4201/_meta.js index 10acf72..ef18267 100644 --- a/content/Math4201/_meta.js +++ b/content/Math4201/_meta.js @@ -13,4 +13,5 @@ export default { Math4201_L8: "Topology I (Lecture 8)", Math4201_L9: "Topology I (Lecture 9)", Math4201_L10: "Topology I (Lecture 10)", + Math4201_L11: "Topology I (Lecture 11)", } diff --git a/content/Math4201/index.md b/content/Math4201/index.md index 8031887..af8378d 100644 --- a/content/Math4201/index.md +++ b/content/Math4201/index.md @@ -1,4 +1,4 @@ -# Math4201 +# Math4201 Course Description E-mail: adaemi@wustl.edu