Review section done

This commit is contained in:
Zheyuan Wu
2025-10-10 00:01:08 -05:00
parent 74dcdc04dc
commit 15a7be1dad
3 changed files with 41 additions and 2 deletions

View File

@@ -306,3 +306,42 @@ A metric space $(Y,d)$ is bounded if there is $M\in \mathbb{R}^{\geq 0}$ such th
Let $X$ be a topological space and $Y$ be a bounded metric space, then the set of all maps, denoted by $\operatorname{Map}(X,Y)$, $f:X\to Y\in \operatorname{Map}(X,Y)$ is a metric space with metric $\rho(f,g)=\sup_{x\in X} d(f(x),g(x))$.
#### Space of continuous map is closed
Let $(\operatorname{Map}(X,Y),\rho)$ be a metric space defined above, then every continuous map is a limit point of some sequence of continuous maps.
$$
Z=\{f\in \operatorname{Map}(X,Y)|f\text{ is continuous}\}
$$
$Z$ is closed in $(\operatorname{Map}(X,Y),\rho)$.
### Quotient space
#### Quotient map
Let $X$ be a topological space and $X^*$ is a set. $q:X\to X^*$ is a surjective map. Then $q$ is a quotient map.
#### Quotient topology
Let $(X,\mathcal{T})$ be a topological space and $X^*$ be a set, $q:X\to X^*$ is a surjective map. Then
$$
\mathcal{T}^* \coloneqq \{U\subseteq X^*\mid q^{-1}(U)\in \mathcal{T}\}
$$
is a topology on $X^*$ called quotient topology.
$(X^*,\mathcal{T}^*)$ is called the quotient space of $X$ by $q$.
#### Equivalent classes
$\sim$ is a subset of $X\times X$ with the following properties:
1. $x\sim x$ for all $x\in X$.
2. If $(x,y)\in \sim$, then $(y,x)\in \sim$.
3. If $(x,y)\in \sim$ and $(y,z)\in \sim$, then $(x,z)\in \sim$.
The equivalence classes of $x\in X$ is denoted by $[x]=\{y\in X|y\sim x\}$.

View File

@@ -6,7 +6,7 @@
>
> A: No. Consider $X=[0,2\pi)$ and $Y=\mathbb{S}^1$ with standard topology in $\mathbb{R}^2$.
>
> Let $f\coloneq \theta\in [0,2\pi)\to (\cos \theta, \sin \theta)\in \mathbb{S}^1$ is a continuous bijection. ($\forall f^{-1}(V)$ is open in $X$)
> Let $f\coloneqq \theta\in [0,2\pi)\to (\cos \theta, \sin \theta)\in \mathbb{S}^1$ is a continuous bijection. ($\forall f^{-1}(V)$ is open in $X$)
>
> But $f^{-1}$ is not continuous, consider the open set in $X, U=[0,\pi)$. Then $f^{-1}(U)=[0,\pi)$ is not open in $Y$.

View File

@@ -76,7 +76,7 @@ In fact, the metric topology by $d$ and $\overline{d}$ are the same. (proved in
Let $X$ be a topological space. and $(Y,d)$ be a **bounded** metric space.
$$
\operatorname{Map}(X,Y)\coloneq \{f:X\to Y|f \text{ is a map}\}
\operatorname{Map}(X,Y)\coloneqq \{f:X\to Y|f \text{ is a map}\}
$$
Define $\rho:\operatorname{Map}(X,Y)\times \operatorname{Map}(X,Y)\to \mathbb{R}$ by