From 16f09e57232ddb102c56aeefc321d99caefc7686 Mon Sep 17 00:00:00 2001 From: Trance-0 <60459821+Trance-0@users.noreply.github.com> Date: Fri, 6 Feb 2026 12:28:17 -0600 Subject: [PATCH] updates --- content/Math4202/Math4202_L11.md | 132 +++++++++++++++++++++++++++++++ content/Math4202/_meta.js | 1 + content/Math4302/Math4302_L10.md | 2 +- content/Math4302/Math4302_L11.md | 1 + content/Math4302/_meta.js | 1 + 5 files changed, 136 insertions(+), 1 deletion(-) create mode 100644 content/Math4202/Math4202_L11.md create mode 100644 content/Math4302/Math4302_L11.md diff --git a/content/Math4202/Math4202_L11.md b/content/Math4202/Math4202_L11.md new file mode 100644 index 0000000..9e6fe2d --- /dev/null +++ b/content/Math4202/Math4202_L11.md @@ -0,0 +1,132 @@ +# Math4201 Topology II (Lecture 11) + +## Algebraic topology + +### Fundamental group + +The $*$ operation has the following properties: + +#### Properties for the path product operation + +Let $[f],[g]\in \Pi_1(X)$, for $[f]\in \Pi_1(X)$, let $s:\Pi_1(X)\to X, [f]\mapsto f(0)$ and $t:\Pi_1(X)\to X, [f]\mapsto f(1)$. + +Note that $t([f])=s([g])$, $[f]*[g]=[f*g]\in \Pi_1(X)$. + +This also satisfies the associativity. $([f]*[g])*[h]=[f]*([g]*[h])$. + +We have left and right identity. $[f]*[e_{t(f)}]=[f], [e_{s(f)}]*[f]=[f]$. + +We have inverse. $[f]*[\bar{x}]=[e_{s(f)}], [\bar{x}]*[f]=[e_{t(f)}]$ + +#### Definition for Groupoid + +Let $f,g$ be paths where $g,f:[0,1]\to X$, and consider the function of all pathes in $G$, denoted as $\mathcal{G}$, + +Set $t:\mathcal{G}\to X$ be the source map, for this case $t(f)=f(0)$, and $s:\mathcal{G}\to X$ be the target map, for this case $s(f)=f(1)$. + +We define + +$$ +\mathcal{G}^{(2)}=\{(f,g)\in \mathcal{G}\times \mathcal{G}|t(f)=s(g)\} +$$ + +And we define the operation $*$ on $\mathcal{G}^{(2)}$ as the path product. + +This satisfies the following properties: + +- Associativity: $(f*g)*h=f*(g*h)$ + +Consider the function $\eta:X\to \mathcal{G}$, for this case $\eta(x)=e_{x}$. + +- We have left and right identity: $\eta(t(f))*f=f, f*\eta(s(f))=f$ + +- Inverse: $\forall g\in \mathcal{G}, \exists g^{-1}\in \mathcal{G}, g*g^{-1}=\eta(s(g))$, $g^{-1}*g=\eta(t(g))$ + +#### Definition for loop + +Let $x_0\in X$. A path starting and ending at $x_0$ is called a loop based at $x_0$. + +#### Definition for the fundamental group + +The fundamental group of $X$ at $x$ is defined to be + +$$ +(\Pi_1(X,x),*) +$$ + +where $*$ is the product operation, and $\Pi_1(X,x)$ is the set o homotopy classes of loops in $X$ based at $x$. + +
+Example of fundamental group + +Consider $X=[0,1]$, with subspace topology from standard topology in $\mathbb{R}$. + +$\Pi_1(X,0)=\{e\}$, (constant function at $0$) since we can build homotopy for all loops based at $0$ as follows $H(s,t)=(1-t)f(s)+t$. + +And $\Pi_1(X,1)=\{e\}$, (constant function at $1$.) + +--- + +Let $X=\{1,2\}$ with discrete topology. + +$\Pi_1(X,1)=\{e\}$, (constant function at $1$.) + +$\Pi_1(X,2)=\{e\}$, (constant function at $2$.) + +--- + +Let $X=S^1$ be the circle. + +$\Pi_1(X,1)=\mathbb{Z}$ (related to winding numbers, prove next week). + +
+ +A natural question is, will the fundamental group depends on the basepoint $x$? + +#### Definition for $\hat{\alpha}$ + +Let $\alpha$ be a path in $X$ from $x_0$ to $x_1$. $\alpha:[0,1]\to X$ such that $\alpha(0)=x_0$ and $\alpha(1)=x_1$. Define $\hat{\alpha}:\Pi_1(X,x_0)\to \Pi_1(X,x_1)$ as follows: + +$$ +\hat{\alpha}(\beta)=[\bar{\alpha}]*[f]*[\alpha] +$$ + +#### $\hat{\alpha}$ is a group homomorphism + +$\hat{\alpha}$ is a group homomorphism between $(\Pi_1(X,x_0),*)$ and $(\Pi_1(X,x_1),*)$ + +
+Proof + +Let $f,g\in \Pi_1(X,x_0)$, then $\hat{\alpha}(f*g)=\hat{\alpha}(f)\hat{\alpha}(g)$ + +$$ +\begin{aligned} +\hat{\alpha}(f*g)&=[\bar{\alpha}]*[f]*[g]*[\alpha]\\ +&=[\bar{\alpha}]*[f]*[e_{x_0}]*[g]*[\alpha]\\ +&=[\bar{\alpha}]*[f]*[\alpha]*[\bar{\alpha}]*[g]*[\alpha]\\ +&=([\bar{\alpha}]*[f]*[\alpha])*([\bar{\alpha}]*[g]*[\alpha])\\ +&=(\hat{\alpha}(f))*(\hat{\alpha}(g)) +\end{aligned} +$$ + +--- + +Next, we will show that $\hat{\alpha}\circ \hat{\bar{\alpha}}([f])=[f]$, and $\hat{\bar{\alpha}}\circ \hat{\alpha}([f])=[f]$. + +$$ +\begin{aligned} +\hat{\alpha}\circ \hat{\bar{\alpha}}([f])&=\hat{\alpha}([\bar{\alpha}]*[f]*[\alpha])\\ +&=[\alpha]*[\bar{\alpha}]*[f]*[\alpha]*[\bar{\alpha}]\\ +&=[e_{x_0}]*[f]*[e_{x_1}]\\ +&=[f] +\end{aligned} +$$ + +The other case is the same + +
+ +#### Corollary of fundamental group + +If $X$ is path-connected and $x_0,x_1\in X$, then $\Pi_1(X,x_0)$ is isomorphic to $\Pi_1(X,x_1)$. diff --git a/content/Math4202/_meta.js b/content/Math4202/_meta.js index 383919e..9666a11 100644 --- a/content/Math4202/_meta.js +++ b/content/Math4202/_meta.js @@ -13,4 +13,5 @@ export default { Math4202_L8: "Topology II (Lecture 8)", Math4202_L9: "Topology II (Lecture 9)", Math4202_L10: "Topology II (Lecture 10)", + Math4202_L11: "Topology II (Lecture 11)", } diff --git a/content/Math4302/Math4302_L10.md b/content/Math4302/Math4302_L10.md index 75385e3..8abbe04 100644 --- a/content/Math4302/Math4302_L10.md +++ b/content/Math4302/Math4302_L10.md @@ -1,4 +1,4 @@ -# Math4302 Modern Algebra (Lecture 9) +# Math4302 Modern Algebra (Lecture 10) ## Groups diff --git a/content/Math4302/Math4302_L11.md b/content/Math4302/Math4302_L11.md new file mode 100644 index 0000000..eba10a6 --- /dev/null +++ b/content/Math4302/Math4302_L11.md @@ -0,0 +1 @@ +# Math4302 Modern Algebra (Lecture 11) \ No newline at end of file diff --git a/content/Math4302/_meta.js b/content/Math4302/_meta.js index 083e8f1..3aa98de 100644 --- a/content/Math4302/_meta.js +++ b/content/Math4302/_meta.js @@ -13,4 +13,5 @@ export default { Math4302_L8: "Modern Algebra (Lecture 8)", Math4302_L9: "Modern Algebra (Lecture 9)", Math4302_L10: "Modern Algebra (Lecture 10)", + Math4302_L11: "Modern Algebra (Lecture 11)", }