updates
This commit is contained in:
@@ -92,11 +92,47 @@ Let $\epsilon>0$. Then for any subset $A\subset S^n$, given the area $\sigma_n(A
|
|||||||
|
|
||||||
The above two inequalities is not proved in the Book _High-dimensional probability_.
|
The above two inequalities is not proved in the Book _High-dimensional probability_.
|
||||||
|
|
||||||
To continue prove the theorem, we use sub-Gaussian concentration of sphere $\sqrt{n}S^n$.
|
To continue prove the theorem, we use sub-Gaussian concentration *(Chapter 3 of _High-dimensional probability_ by Roman Vershynin)* of sphere $\sqrt{n}S^n$.
|
||||||
|
|
||||||
This will leads to some constant $C>0$ such that
|
This will leads to some constant $C>0$ such that the following lemma holds:
|
||||||
|
|
||||||
|
#### The "Blow-up" lemma
|
||||||
|
|
||||||
|
Let $A$ be a subset of sphere $\sqrt{n}S^n$, and $\sigma$ denotes the normalized area of $A$. Then if $\sigma\geq \frac{1}{2}$, then for every $t\geq 0$,
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sigma(A_t)\geq 1-2\exp(-ct^2)
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $A_t=\{x\in S^n: \operatorname{dist}(x,A)\leq t\}$ and $c$ is some positive constant.
|
||||||
|
|
||||||
|
#### Proof of the Levy's concentration theorem
|
||||||
|
|
||||||
|
Proof:
|
||||||
|
|
||||||
|
Without loss of generality, we can assume that $\eta=1$. Let $M$ denotes the median of $f(X)$.
|
||||||
|
|
||||||
|
So $\operatorname{Pr}[|f(X)\leq M|]\geq \frac{1}{2}$, and $\operatorname{Pr}[|f(X)\geq M|]\geq \frac{1}{2}$.
|
||||||
|
|
||||||
|
Consider the sub-level set $A\coloneqq \{x\in \sqrt{n}S^n: |f(x)|\leq M\}$.
|
||||||
|
|
||||||
|
Since $\operatorname{Pr}[X\in A]\geq \frac{1}{2}$, by the blow-up lemma, we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\operatorname{Pr}[X\in A_t]\geq 1-2\exp(-ct^2)
|
||||||
|
$$
|
||||||
|
|
||||||
|
And since
|
||||||
|
|
||||||
|
$$
|
||||||
|
\operatorname{Pr}[X\in A_t]\leq \operatorname{Pr}[f(X)\leq M+t]
|
||||||
|
$$
|
||||||
|
|
||||||
|
Combining the above two inequalities, we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\operatorname{Pr}[f(X)\leq M+t]\geq 1-2\exp(-ct^2)
|
||||||
|
$$
|
||||||
|
|
||||||
> The Levy's lemma can also be found in _Metric Structures for Riemannian and Non-Riemannian Spaces_ by M. Gromov. $3\frac{1}{2}.19$ The Levy concentration theory.
|
> The Levy's lemma can also be found in _Metric Structures for Riemannian and Non-Riemannian Spaces_ by M. Gromov. $3\frac{1}{2}.19$ The Levy concentration theory.
|
||||||
|
|
||||||
@@ -122,10 +158,10 @@ Hardcore computing may generates the bound but M. Gromov did not make the detail
|
|||||||
|
|
||||||
Choose a random pure state $\sigma=|\psi\rangle\langle\psi|$ from $A'\otimes A$.
|
Choose a random pure state $\sigma=|\psi\rangle\langle\psi|$ from $A'\otimes A$.
|
||||||
|
|
||||||
The expected value of the entropy of entanglement is kown and satisfies a concentration inequality.
|
The expected value of the entropy of entanglement is known and satisfies a concentration inequality.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\mathbb{E}[H(\psi_A)] \leq \log_2(d_A)-\frac{1}{2\ln(2)}\frac{d_A}{d_B}
|
\mathbb{E}[H(\psi_A)] \geq \log_2(d_A)-\frac{1}{2\ln(2)}\frac{d_A}{d_B}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
From the Levy's lemma, we have
|
From the Levy's lemma, we have
|
||||||
@@ -133,15 +169,29 @@ From the Levy's lemma, we have
|
|||||||
If we define $\beta=\frac{d_A}{\log_2(d_B)}$, then we have
|
If we define $\beta=\frac{d_A}{\log_2(d_B)}$, then we have
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\operatorname{Pr}[H(\psi_A) \geq \log_2(d_A)-\alpha-\beta] \leq \exp\left(-\frac{(d_Ad_B-1)C\alpha^2}{(\log_2(d_A))^2}\right)
|
\operatorname{Pr}[H(\psi_A) < \log_2(d_A)-\alpha-\beta] \leq \exp\left(-\frac{(d_Ad_B-1)C\alpha^2}{(\log_2(d_A))^2}\right)
|
||||||
$$
|
$$
|
||||||
where $C$ is a small constatnt and $d_B\geq d_A\geq 3$.
|
where $C$ is a small constant and $d_B\geq d_A\geq 3$.
|
||||||
|
|
||||||
|
|
||||||
#### ebits and qbits
|
#### ebits and qbits
|
||||||
|
|
||||||
### Superdense coding of quantum states
|
### Superdense coding of quantum states
|
||||||
|
|
||||||
|
It is a procedure defined as follows:
|
||||||
|
|
||||||
|
Suppose $A$ and $B$ share a Bell state $|\Phi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, where $A$ holds the first part and $B$ holds the second part.
|
||||||
|
|
||||||
|
$A$ wish to send 2 classical bits to $B$.
|
||||||
|
|
||||||
|
$A$ performs one of four Pauli unitaries on the combined state of entangled qubits $\otimes$ one qubit. Then $A$ sends the resulting one qubit to $B$.
|
||||||
|
|
||||||
|
This operation extends the initial one entangled qubit to a system of one of four orthogonal Bell states.
|
||||||
|
|
||||||
|
$B$ performs a measurement on the combined state of the one qubit and the entangled qubits he holds.
|
||||||
|
|
||||||
|
$B$ decodes the result and obtains the 2 classical bits sent by $A$.
|
||||||
|
|
||||||
|
|
||||||
### Consequences for mixed state entanglement measures
|
### Consequences for mixed state entanglement measures
|
||||||
|
|
||||||
#### Quantum mutual information
|
#### Quantum mutual information
|
||||||
|
|||||||
@@ -12,4 +12,4 @@ Practically speaking:
|
|||||||
- Entanglement and non-orthogonality
|
- Entanglement and non-orthogonality
|
||||||
|
|
||||||
## MM space
|
## MM space
|
||||||
-
|
|
||||||
|
|||||||
@@ -582,6 +582,8 @@ $B$ performs a measurement on the combined state of the one qubit and the entang
|
|||||||
|
|
||||||
$B$ decodes the result and obtains the 2 classical bits sent by $A$.
|
$B$ decodes the result and obtains the 2 classical bits sent by $A$.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
## Section 4: Quantum automorphisms and dynamics
|
## Section 4: Quantum automorphisms and dynamics
|
||||||
|
|
||||||
Section ignored.
|
Section ignored.
|
||||||
BIN
public/Math401/Superdense_coding.png
Normal file
BIN
public/Math401/Superdense_coding.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 12 KiB |
Reference in New Issue
Block a user