initial commit
This commit is contained in:
125
pages/Math4111/Math4111_L3.md
Normal file
125
pages/Math4111/Math4111_L3.md
Normal file
@@ -0,0 +1,125 @@
|
||||
# Lecture 3
|
||||
|
||||
## Review
|
||||
|
||||
Let $S=\mathbb{Z}$.
|
||||
|
||||
1. Let $E=\{x\in S:x>0,x^2<5\}$. What are $sup\ E$ and $inf\ E$?
|
||||
|
||||
$sup\ E=2,inf\ E=1$
|
||||
|
||||
2. Can you find a subset $E\subset S$ which is bounded above but not bounded below?
|
||||
|
||||
$E=\{x\in S:x<0\}$
|
||||
|
||||
3. Does $S$ have the least upper bound property?
|
||||
|
||||
Yes, $\forall E\subset S$ that tis non-empty and bounded above, $\exist Sup E\in S$.
|
||||
|
||||
4. Does $S$ have the greatest lower bound property?
|
||||
|
||||
Yes, $\forall E\subset S$ that tis non-empty and bounded below, $\exist Inf E\in S$.
|
||||
|
||||
## Continue
|
||||
|
||||
### LUBP
|
||||
|
||||
Proof that $LUBP\implies GLBP$.
|
||||
|
||||
Let $S$ be an ordered set with LUBP. Let B<S be non-empty and bounded below.
|
||||
|
||||
Let $L=y\in S:y$ is a lower bound of B$\}$. From the picture, we expect $sup\ L=inf\ B$ First we'll show $sup\ L$ exists.
|
||||
|
||||
1. To show $L\neq \phi$.
|
||||
|
||||
$B$ is bounded below $\implies L\neq\phi$
|
||||
2. To show $L$ id bounded above.
|
||||
|
||||
$B$ is not empty $\implies \exists x\in B\implies x$ is a upper bound of $L$.
|
||||
|
||||
3. Since $S$ has the least upper bound property, $sup L$ exists (in $S$).
|
||||
|
||||
Let's say $\alpha=sup\ L$. We claim that $\alpha=inf\ B$. We need to show $2$ things.
|
||||
|
||||
1. To show $\alpha$ is a lower bound of $B$, $\forall \gamma\in B,\alpha\leq \gamma$.
|
||||
|
||||
Let $\gamma\in B$, then $\gamma$ is an upper bound of $L$.
|
||||
|
||||
Since $\alpha$ is the least upper bound of $L$, $\alpha\leq \gamma$.
|
||||
|
||||
2. To show $\alpha$ is the greatest lower bound of $B$, $\forall \beta>\alpha,\beta$ is not a lower bound of $B$.
|
||||
|
||||
Let $\beta>\alpha$. Since $\alpha$ is an upper bound of $L$, $\beta\notin L$.
|
||||
|
||||
By definition of $L$, $\beta$ is not a lower bound of $B$.
|
||||
|
||||
Thus $\alpha=inf\ B$
|
||||
|
||||
### Field
|
||||
|
||||
| | addition | multiplication |
|
||||
| -------------- | ----------------------------------------------------------- | -------------------------------------------------------------- |
|
||||
| closure | $\checkmark$ | $\checkmark$ |
|
||||
| commutativity | $\checkmark$ | $\checkmark$ |
|
||||
| associativity | $\checkmark$ | $\checkmark$ |
|
||||
| identity | $\checkmark$ (denoted $0$) | $\checkmark$ (denoted $1$) |
|
||||
| inverses | $\checkmark$ (denoted $-x$) | $\checkmark$ (exists when $x\neq 0$ denoted $1/x$ or $x^{-1}$) |
|
||||
| distributivity | $\checkmark$ (distributive of multiplication over addition) ||
|
||||
|
||||
Examples: $\mathbb{Q},\mathbb{R},\mathbb{C}$
|
||||
|
||||
Non-examples: $\mathbb{N}$ fails A4,A5,M5, $\mathbb{Z}$ fails M5
|
||||
|
||||
Another example of field: $\mathbb{Z}/5\mathbb{Z}=\{1,2,3,4,5\}$, $\forall a,b\in \mathbb{Z}/5\mathbb{Z}$, $a+b=(a+b)\mod 5$, $a\cdot b=(a\cdot b)\mod 5$
|
||||
|
||||
Some properties of fields: see Proposition 1.14,1.15,1.16
|
||||
|
||||
Remark:
|
||||
|
||||
1. It's more helpful if you try to prove these yourselves. The proofs are "straightforward".
|
||||
2. For this course, it's not important to remember which properties are axioms, etc.
|
||||
|
||||
Example of proof:
|
||||
|
||||
#### 1.14(a) $x+y=x+z\implies y=z$
|
||||
|
||||
Proof:
|
||||
|
||||
$x+y=x+z$,
|
||||
|
||||
$(-x)+(x+y)=(-x)+(x+z)$,
|
||||
|
||||
by A3, $(-x+x)+(y)=(-x+x)+(z)$,
|
||||
|
||||
$0+y=0+z$,
|
||||
|
||||
$y=z$.
|
||||
|
||||
Chain of equalities.
|
||||
|
||||
#### 1.16(a) $\forall x\in \mathbb{F}, 0x=0$
|
||||
|
||||
1. A4, where 0 is defined.
|
||||
2. Since $0$ is defined in the addition, identity. The proposition says something about multiplication by 0. The only proposition that relates the addition and multiplication is Distributive law.
|
||||
|
||||
$0x=(0+0)x=0x+0x$, cancel $0x$ on both side we have $0x=0$.
|
||||
|
||||
### Ordered Field (1.17)
|
||||
|
||||
An _ordered field_ is a _field_ $F$ which is also an _ordered set_, such that
|
||||
|
||||
1. $x+y<x+z$ if $x,y,\in F$ and $y<z$,
|
||||
2. $xy>0$ if $x\in F,y\in F,x>0$ and $y>0$.
|
||||
|
||||
#### Prop 1.18
|
||||
|
||||
If $x>0$ and $y<z$, then $xy<yz$.
|
||||
|
||||
Proof: $y<z\implies 0<z-y$, $x(z-y)>0\implies xz>xy$
|
||||
|
||||
We define $\mathbb{R}$ to be the unique ordered field with $LUBP$. (The existence and uniqueness are discussed in the appendix of this chapter).
|
||||
|
||||
#### Theorem 1.20
|
||||
|
||||
1. (Archimedean property) If $x,y\in \mathbb{R}$ and $x>0$, then $\exists n\in \mathbb{N}$ such that $nx>y$.
|
||||
2. ($\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$$ such that $x<p<y$.
|
||||
Reference in New Issue
Block a user