final update on 4121
This commit is contained in:
@@ -44,6 +44,45 @@ where $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$ and $\alpha_i = \inf_{x \in [x_{i
|
||||
|
||||
### Fail of Riemann-Stieltjes Integration
|
||||
|
||||
Consider the function
|
||||
|
||||
$$
|
||||
((x)) = \begin{cases}
|
||||
x-\lfloor x \rfloor & x \in [\lfloor x \rfloor, \lfloor x \rfloor + \frac{1}{2}) \\
|
||||
0 & x=\lfloor x \rfloor + \frac{1}{2}\\
|
||||
x-\lfloor x \rfloor - 1 & x \in (\lfloor x \rfloor + \frac{1}{2}, \lfloor x \rfloor + 1] \end{cases}
|
||||
$$
|
||||
|
||||
).png)
|
||||
|
||||
We define
|
||||
|
||||
$$
|
||||
f(x) = \sum_{n=1}^{\infty} \frac{((nx))}{n^2}=\lim_{N\to\infty}\sum_{n=1}^{N} \frac{((nx))}{n^2}
|
||||
$$
|
||||
|
||||
).png)
|
||||
|
||||
(i) The series converges uniformly over $x\in[0,1]$.
|
||||
|
||||
$$
|
||||
\left|f(x)-\sum_{n=1}^{N} \frac{((nx))}{n^2}\right|\leq \sum_{n=N+1}^{\infty}\frac{|((nx))|}{n^2}\leq \sum_{n=N+1}^{\infty} \frac{1}{n^2}<\epsilon
|
||||
$$
|
||||
|
||||
As a consequence, $f(x)\in \mathscr{R}$.
|
||||
|
||||
(ii) $f$ has a discontinuity at every rational number with even denominator.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\lim_{h\to 0^+}f(\frac{a}{2b}+h)-f(\frac{a}{2b})&=\lim_{h\to 0^+}\sum_{n=1}^{\infty}\frac{((\frac{na}{2b}+h))}{n^2}-\sum_{n=1}^{\infty}\frac{((\frac{na}{2b}))}{n^2}\\
|
||||
&=\lim_{h\to 0^+}\sum_{n=1}^{\infty}\frac{((\frac{na}{2b}+h))-((\frac{na}{2b}))}{n^2}\\
|
||||
&=\sum_{n=1}^{\infty}\lim_{h\to 0^+}\frac{((\frac{na}{2b}+h))-((\frac{na}{2b}))}{n^2}\\
|
||||
&>0
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
|
||||
#### Some integrable functions are not differentiable (violates the fundamental theorem of calculus)
|
||||
|
||||
Solve:
|
||||
@@ -70,7 +109,7 @@ And we claim that the function is integrable on $[a,b]$ if and only if the outer
|
||||
|
||||
> Outer content:
|
||||
>
|
||||
> The **outer content** of a set $S$ is the infimum of the lengths of all finite covers of $S$. $c_e(S) = \inf_{C\in \mathcal{C}_S}\ell(C)$. (e denotes "exterior")
|
||||
> The **outer content** of a set $S$ is the infimum of the lengths of all **finite covers** of $S$. $c_e(S) = \inf_{C\in \mathcal{C}_S}\ell(C)$. (e denotes "exterior")
|
||||
|
||||
Homework question: You cannot cover an interval $[a,b]$ with length $k$ with a finite cover of length strictly less than $k$.
|
||||
|
||||
@@ -150,7 +189,7 @@ $\mathbb{R}$ is not first species.
|
||||
>
|
||||
> The **boundary** of a set $S$ is the set of all points in $S$ that are not in the interior of $S$. $\partial S = \overline{S} \setminus S^\circ$.
|
||||
|
||||
#### Missing Thoerem 3.4
|
||||
#### Theorem 3.4
|
||||
|
||||
Bolzano-Weierstrass Theorem:
|
||||
|
||||
@@ -190,12 +229,51 @@ For any open cover of a compact set, there exists a finite subcover.
|
||||
|
||||
A set $S$ is **nowhere dense** if there are no open intervals in which $S$ is dense.
|
||||
|
||||
That is equivalent to $S'$ contains no open intervals.
|
||||
That is equivalent to **$S'$ contains no open intervals**.
|
||||
|
||||
Note: If $S$ is nowhere dense, then $S^c$ is dense. But if $S$ is dense, $S^c$ is not necessarily nowhere dense. (Consider $\mathbb{Q}$)
|
||||
|
||||
### Perfect Set
|
||||
|
||||
A set $S$ is **perfect** if $S'=S$.
|
||||
|
||||
Example: open intervals, Cantor set.
|
||||
|
||||
#### Cantor set
|
||||
|
||||
The Cantor set ($SVC(3)$) is the set of all real numbers in $[0,1]$ that can be represented in base 3 using only the digits 0 and 2.
|
||||
|
||||
The outer content of the Cantor set is 0.
|
||||
|
||||
#### Generalized Cantor set (SVC(n))
|
||||
|
||||
The outer content of $SVC(n)$ is $\frac{n-3}{n-2}$.
|
||||
|
||||
#### Lemma 4.4
|
||||
|
||||
Osgood's Lemma:
|
||||
|
||||
Let $G$ be a closed, bounded set and Let $G_1\subseteq G_2\subseteq \ldots$ and $G=\bigcup_{n=1}^{\infty} G_n$. Then $\lim_{n\to\infty} c_e(G_n)=c_e(G)$.
|
||||
|
||||
Key: Using Heine-Borel Theorem.
|
||||
|
||||
#### Theorem 4.5
|
||||
|
||||
Arzela-Osgood Theorem:
|
||||
|
||||
Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous, uniformly bounded functions on $[0,1]$ that converges pointwise to $0$. It follows that
|
||||
|
||||
$$
|
||||
\lim_{n\to\infty}\int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n\to\infty} f_n(x) \, dx=0
|
||||
$$
|
||||
|
||||
Key: Using Osgood's Lemma and do case analysis on bounded and unbounded parts of the Riemann-Stieltjes integral.
|
||||
|
||||
#### Theorem 4.7
|
||||
|
||||
Baire Category Theorem:
|
||||
|
||||
An open interval cannot be covered by a countable union of nowhere dense sets.
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user