final update on 4121
This commit is contained in:
264
pages/Math4121/Exam_reviews/Math4121_E1.md
Normal file
264
pages/Math4121/Exam_reviews/Math4121_E1.md
Normal file
@@ -0,0 +1,264 @@
|
|||||||
|
# Math4121 Exam 1 Review
|
||||||
|
|
||||||
|
Range: Chapter 5 and 6 of Rudin. We skipped (and so you will not be tested on)
|
||||||
|
|
||||||
|
- Differentiation of Vector Valued Functions (pp. 111-113)
|
||||||
|
- Integration of Vector-Valued Function and Rectifiable Curves (pp.135-137)
|
||||||
|
|
||||||
|
You will also not be tested on Uniform Convergence and Integration, which we cover in class on Monday 2/10.
|
||||||
|
|
||||||
|
## Chapter 5: Differentiation
|
||||||
|
|
||||||
|
### Definition of the Derivative
|
||||||
|
|
||||||
|
Let $f$ be a real function defined on an closed interval $[a,b]$. We say that $f$ is differentiable at a point $x \in [a,b]$ if the following limit exists:
|
||||||
|
|
||||||
|
$$
|
||||||
|
f'(x) = \lim_{t\to x} \frac{f(t) - f(x)}{t - x}
|
||||||
|
$$
|
||||||
|
|
||||||
|
If the limit exists, we call it the derivative of $f$ at $x$ and denote it by $f'(x)$.
|
||||||
|
|
||||||
|
#### Theorem 5.2
|
||||||
|
|
||||||
|
Every differentiable function is [continuous](https://notenextra.trance-0.com/Math4111/Math4111_L22#definition-45).
|
||||||
|
|
||||||
|
The converse is not true, consider $f(x) = |x|$.
|
||||||
|
|
||||||
|
#### Theorem 5.3
|
||||||
|
|
||||||
|
If $f,g$ are differentiable at $x$, then
|
||||||
|
|
||||||
|
1. $(f+g)'(x) = f'(x) + g'(x)$
|
||||||
|
2. $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$
|
||||||
|
3. If $g(x) \neq 0$, then $(f/g)'(x) = (f'(x)g(x) - f(x)g'(x))/g(x)^2$
|
||||||
|
|
||||||
|
#### Theorem 5.4
|
||||||
|
|
||||||
|
Constant function is differentiable and its derivative is $0$.
|
||||||
|
|
||||||
|
#### Theorem 5.5
|
||||||
|
|
||||||
|
Chain rule: If $f$ is differentiable at $x$ and $g$ is differentiable at $f(x)$, then the composite function $g\circ f$ is differentiable at $x$ and
|
||||||
|
|
||||||
|
$$
|
||||||
|
(g\circ f)'(x) = g'(f(x))f'(x)
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 5.8
|
||||||
|
|
||||||
|
The derivative of local extremum ($\exists \delta > 0$ s.t. $f(x)\geq f(y)$ or $f(x)\leq f(y)$ for all $y\in (x-\delta,x+\delta)$) is $0$.
|
||||||
|
|
||||||
|
#### Theorem 5.9
|
||||||
|
|
||||||
|
Generalized mean value theorem: If $f,g$ are differentiable on $(a,b)$, then there exists a point $x\in (a,b)$ such that
|
||||||
|
|
||||||
|
$$
|
||||||
|
(f(b)-f(a))g'(x) = (g(b)-g(a))f'(x)
|
||||||
|
$$
|
||||||
|
|
||||||
|
If we put $g(x) = x$, we get the mean value theorem.
|
||||||
|
|
||||||
|
$$
|
||||||
|
f(b)-f(a) = f'(x)(b-a)
|
||||||
|
$$
|
||||||
|
|
||||||
|
for some $x\in (a,b)$.
|
||||||
|
|
||||||
|
#### Theorem 5.12
|
||||||
|
|
||||||
|
Intermediate value theorem:
|
||||||
|
|
||||||
|
If $f$ is differentiable on $[a,b]$, for all $\lambda$ between $f'(a)$ and $f'(b)$, there exists a $c\in (a,b)$ such that $f'(x) = \lambda$.
|
||||||
|
|
||||||
|
#### Theorem 5.13
|
||||||
|
|
||||||
|
L'Hôpital's rule: If $f,g$ are differentiable in $(a,b)$ and $g'(x) \neq 0$ for all $x\in (a,b)$, where $-\infty \leq a < b \leq \infty$,
|
||||||
|
|
||||||
|
Suppose
|
||||||
|
$$
|
||||||
|
\frac{f'(x)}{g'(x)} \to A \text{ as } x\to a
|
||||||
|
$$
|
||||||
|
|
||||||
|
If
|
||||||
|
$$
|
||||||
|
f(x) \to 0, g(x) \to 0 \text{ as } x\to a
|
||||||
|
$$
|
||||||
|
|
||||||
|
or if
|
||||||
|
|
||||||
|
$$
|
||||||
|
g(x) \to \infty \text{ as } x\to a
|
||||||
|
$$
|
||||||
|
|
||||||
|
then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lim_{x\to a} \frac{f(x)}{g(x)} = A
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 5.15
|
||||||
|
|
||||||
|
Taylor's theorem: If $f$ is $n$ times differentiable on $[a,b]$, $f^{(n-1)}$ is continuous on $[a,b]$, and $f^{(n)}$ exists on $(a,b)$, for any distinct points $\alpha, \beta \in [a,b]$, there exists a point $x\in (\alpha, \beta)$ such that
|
||||||
|
|
||||||
|
$$
|
||||||
|
f(\beta) =\left(\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^k\right) + \frac{f^{(n)}(x)}{n!}(\beta-\alpha)^n
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Chapter 6: Riemann-Stieltjes Integration
|
||||||
|
|
||||||
|
### Definition of the Integral
|
||||||
|
|
||||||
|
Let $\alpha$ be a monotonically increasing function on $[a,b]$.
|
||||||
|
|
||||||
|
A partition of $[a,b]$ is a set of points $P = \{x_0, x_1, \cdots, x_n\}$ such that
|
||||||
|
|
||||||
|
$$
|
||||||
|
a = x_0 < x_1 < \cdots < x_n = b
|
||||||
|
$$
|
||||||
|
|
||||||
|
Let $\Delta \alpha_i = \alpha(x_{i}) - \alpha(x_{i-1})$ for $i = 1, \cdots, n$.
|
||||||
|
|
||||||
|
Let $m_i = \inf \{f(x) : x_{i-1} \leq x \leq x_{i}\}$ and $M_i = \sup \{f(x) : x_{i-1} \leq x \leq x_{i}\}$ for $i = 1, \cdots, n$.
|
||||||
|
|
||||||
|
The lower sum of $f$ with respect to $\alpha$ is
|
||||||
|
|
||||||
|
$$L(f,P,\alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i$$
|
||||||
|
|
||||||
|
The upper sum of $f$ with respect to $\alpha$ is
|
||||||
|
|
||||||
|
$$U(f,P,\alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i$$
|
||||||
|
|
||||||
|
Let $\overline{\int_a^b} f(x) d\alpha(x)=\sup_P L(f,P,\alpha)$ and $\underline{\int_a^b} f(x) d\alpha(x)=\inf_P U(f,P,\alpha)$.
|
||||||
|
|
||||||
|
If $\overline{\int_a^b} f(x) d\alpha(x) = \underline{\int_a^b} f(x) d\alpha(x)$, we say that $f$ is Riemann-Stieltjes integrable with respect to $\alpha$ on $[a,b]$ and we write
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_a^b f(x) d\alpha(x) = \overline{\int_a^b} f(x) d\alpha(x) = \underline{\int_a^b} f(x) d\alpha(x)
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 6.4
|
||||||
|
|
||||||
|
Refinement of partition will never make the lower sum smaller or the upper sum larger.
|
||||||
|
|
||||||
|
$$
|
||||||
|
L(f,P,\alpha) \leq L(f,P^*,\alpha) \leq U(f,P^*,\alpha) \leq U(f,P,\alpha)
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 6.5
|
||||||
|
|
||||||
|
$\underline{\int_a^b} f(x) d\alpha(x) \leq \overline{\int_a^b} f(x) d\alpha(x)$
|
||||||
|
|
||||||
|
#### Theorem 6.6
|
||||||
|
|
||||||
|
$f\in \mathscr{R}(\alpha)$ on $[a,b]$ if and only if for every $\epsilon > 0$, there exists a partition $P$ of $[a,b]$ such that
|
||||||
|
|
||||||
|
$$
|
||||||
|
U(f,P,\alpha) - L(f,P,\alpha) < \epsilon
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 6.8
|
||||||
|
|
||||||
|
Every continuous function on a closed interval is Riemann-Stieltjes integrable with respect to any monotonically increasing function.
|
||||||
|
|
||||||
|
#### Theorem 6.9
|
||||||
|
|
||||||
|
If $f$ is monotonically increasing on $[a,b]$ and **$\alpha$ is continuous on $[a,b]$**, then $f\in \mathscr{R}(\alpha)$ on $[a,b]$.
|
||||||
|
|
||||||
|
Key: We can repartition the interval $[a,b]$ using $f$.
|
||||||
|
|
||||||
|
#### Theorem 6.10
|
||||||
|
|
||||||
|
If $f$ is bounded on $[a,b]$ and has only **finitely many discontinuities** on $[a,b]$, then $f\in \mathscr{R}(\alpha)$ on $[a,b]$.
|
||||||
|
|
||||||
|
Key: We can use the bound and partition around the points of discontinuity to make the error arbitrary small.
|
||||||
|
|
||||||
|
#### Theorem 6.11
|
||||||
|
|
||||||
|
If $f\in \mathscr{R}(\alpha)$ on $[a,b]$, and $m\leq f(x) \leq M$ for all $x\in [a,b]$, and $\phi$ is a continuous function on $[m,M]$, then $\phi\circ f\in \mathscr{R}(\alpha)$ on $[a,b]$.
|
||||||
|
|
||||||
|
_Composition of bounded integrable functions and continuous functions is integrable._
|
||||||
|
|
||||||
|
#### Theorem 6.12
|
||||||
|
|
||||||
|
Properties of the integral:
|
||||||
|
|
||||||
|
Let $f,g\in \mathscr{R}(\alpha)$ on $[a,b]$, and $c$ be a constant. Then
|
||||||
|
|
||||||
|
1. $f+g\in \mathscr{R}(\alpha)$ on $[a,b]$ and $\int_a^b (f(x) + g(x)) d\alpha(x) = \int_a^b f(x) d\alpha(x) + \int_a^b g(x) d\alpha(x)$
|
||||||
|
2. $cf\in \mathscr{R}(\alpha)$ on $[a,b]$ and $\int_a^b cf(x) d\alpha(x) = c\int_a^b f(x) d\alpha(x)$
|
||||||
|
3. $f\in \mathscr{R}(\alpha)$ on $[a,b]$ and $c\in [a,b]$, then $\int_a^b f(x) d\alpha(x) = \int_a^c f(x) d\alpha(x) + \int_c^b f(x) d\alpha(x)$.
|
||||||
|
4. **Favorite Estimate**: If $|f(x)| \leq M$ for all $x\in [a,b]$, then $\left|\int_a^b f(x) d\alpha(x)\right| \leq M(\alpha(b)-\alpha(a))$.
|
||||||
|
5. If $f\in \mathscr{R}(\beta)$ on $[a,b]$, then $\int_a^b f(x) d(\alpha+\beta) = \int_a^b f(x) d\alpha + \int_a^b f(x) d\beta$.
|
||||||
|
|
||||||
|
#### Theorem 6.13
|
||||||
|
|
||||||
|
If $f,g\in \mathscr{R}(\alpha)$ on $[a,b]$, then
|
||||||
|
|
||||||
|
1. $fg\in \mathscr{R}(\alpha)$ on $[a,b]$
|
||||||
|
2. $|f|\in \mathscr{R}(\alpha)$ on $[a,b]$ and $\left|\int_a^b f(x) d\alpha(x)\right| \leq \int_a^b |f(x)| d\alpha(x)$
|
||||||
|
|
||||||
|
Key: (1), use Theorem 6.12, 6.11 to build up $fg$ from $(f+g)^2-f^2-g^2$. (2), take $\phi(x) = |x|$ in Theorem 6.11.
|
||||||
|
|
||||||
|
#### Theorem 6.14
|
||||||
|
|
||||||
|
Integration over indicator functions:
|
||||||
|
|
||||||
|
If $a<s<b$, $f$ is bounded on $[a,b]$, and $f$ is continuous at $s$, and $\alpha(x)=I(x-s)$, then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_a^b f(x) d\alpha(x) = f(s)
|
||||||
|
$$
|
||||||
|
|
||||||
|
Key: Note the max difference can be made only occurs at $s$.
|
||||||
|
|
||||||
|
#### Theorem 6.15
|
||||||
|
|
||||||
|
Integration over step functions:
|
||||||
|
|
||||||
|
If $\alpha(x) = \sum_{i=1}^{n} c_i I(x-x_i)$ for $x\in [a,b]$, then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_a^b f(x) d\alpha(x) = \sum_{i=1}^{n} c_i f(x_i)
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 6.21
|
||||||
|
|
||||||
|
Fundamental theorem of calculus:
|
||||||
|
|
||||||
|
Let $f\in \mathscr{R}(\alpha)$ on $[a,b]$, and $F(x) = \int_a^x f(t) d\alpha(t)$. Then
|
||||||
|
|
||||||
|
1. $F$ is continuous on $[a,b]$
|
||||||
|
2. If $f$ is continuous at $x\in [a,b]$, then $F$ is differentiable at $x$ and $F'(x) = f(x)$
|
||||||
|
|
||||||
|
## Chapter 7: Sequence and Series of Functions
|
||||||
|
|
||||||
|
### Example of non-Riemann integrable function
|
||||||
|
|
||||||
|
$\lim_{m\to \infty} \lim_{n\to \infty} (\cos(m!\pi x))^{2n}=\begin{cases} 1 & x\in \mathbb{Q} \\ 0 & x\notin \mathbb{Q} \end{cases}$
|
||||||
|
|
||||||
|
This function is everywhere discontinuous and not Riemann integrable.
|
||||||
|
|
||||||
|
### Uniform Convergence
|
||||||
|
|
||||||
|
#### Definition 7.7
|
||||||
|
|
||||||
|
A sequence of functions $\{f_n\}$ converges uniformly to $f$ on $E$ if for every $\epsilon > 0$, there exists a positive integer $N$ such that
|
||||||
|
|
||||||
|
$$
|
||||||
|
|f_n(x) - f(x)| < \epsilon \text{ for all } x\in E \text{ and } n\geq N
|
||||||
|
$$
|
||||||
|
|
||||||
|
If $E$ is a point, then that's the common definition of convergence.
|
||||||
|
|
||||||
|
If we have uniform convergence, then we can swap the order of limits.
|
||||||
|
|
||||||
|
#### Theorem 7.16
|
||||||
|
|
||||||
|
If $\{f_n\}\in \mathscr{R}(\alpha)$ on $[a,b]$, and $\{f_n\}$ converges uniformly to $f$ on $[a,b]$, then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_a^b f(x) d\alpha(x) = \lim_{n\to \infty} \int_a^b f_n(x) d\alpha(x)
|
||||||
|
$$
|
||||||
|
|
||||||
|
Key: Use the definition of uniform convergence to bound the difference between the integral of the limit and the limit of the integral. $\int_a^b (f-f_n)d\alpha \leq |f-f_n| \int_a^b d\alpha = |f-f_n| (\alpha(b)-\alpha(a))$.
|
||||||
@@ -44,6 +44,45 @@ where $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$ and $\alpha_i = \inf_{x \in [x_{i
|
|||||||
|
|
||||||
### Fail of Riemann-Stieltjes Integration
|
### Fail of Riemann-Stieltjes Integration
|
||||||
|
|
||||||
|
Consider the function
|
||||||
|
|
||||||
|
$$
|
||||||
|
((x)) = \begin{cases}
|
||||||
|
x-\lfloor x \rfloor & x \in [\lfloor x \rfloor, \lfloor x \rfloor + \frac{1}{2}) \\
|
||||||
|
0 & x=\lfloor x \rfloor + \frac{1}{2}\\
|
||||||
|
x-\lfloor x \rfloor - 1 & x \in (\lfloor x \rfloor + \frac{1}{2}, \lfloor x \rfloor + 1] \end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
).png)
|
||||||
|
|
||||||
|
We define
|
||||||
|
|
||||||
|
$$
|
||||||
|
f(x) = \sum_{n=1}^{\infty} \frac{((nx))}{n^2}=\lim_{N\to\infty}\sum_{n=1}^{N} \frac{((nx))}{n^2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
).png)
|
||||||
|
|
||||||
|
(i) The series converges uniformly over $x\in[0,1]$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\left|f(x)-\sum_{n=1}^{N} \frac{((nx))}{n^2}\right|\leq \sum_{n=N+1}^{\infty}\frac{|((nx))|}{n^2}\leq \sum_{n=N+1}^{\infty} \frac{1}{n^2}<\epsilon
|
||||||
|
$$
|
||||||
|
|
||||||
|
As a consequence, $f(x)\in \mathscr{R}$.
|
||||||
|
|
||||||
|
(ii) $f$ has a discontinuity at every rational number with even denominator.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
\lim_{h\to 0^+}f(\frac{a}{2b}+h)-f(\frac{a}{2b})&=\lim_{h\to 0^+}\sum_{n=1}^{\infty}\frac{((\frac{na}{2b}+h))}{n^2}-\sum_{n=1}^{\infty}\frac{((\frac{na}{2b}))}{n^2}\\
|
||||||
|
&=\lim_{h\to 0^+}\sum_{n=1}^{\infty}\frac{((\frac{na}{2b}+h))-((\frac{na}{2b}))}{n^2}\\
|
||||||
|
&=\sum_{n=1}^{\infty}\lim_{h\to 0^+}\frac{((\frac{na}{2b}+h))-((\frac{na}{2b}))}{n^2}\\
|
||||||
|
&>0
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
|
||||||
#### Some integrable functions are not differentiable (violates the fundamental theorem of calculus)
|
#### Some integrable functions are not differentiable (violates the fundamental theorem of calculus)
|
||||||
|
|
||||||
Solve:
|
Solve:
|
||||||
@@ -70,7 +109,7 @@ And we claim that the function is integrable on $[a,b]$ if and only if the outer
|
|||||||
|
|
||||||
> Outer content:
|
> Outer content:
|
||||||
>
|
>
|
||||||
> The **outer content** of a set $S$ is the infimum of the lengths of all finite covers of $S$. $c_e(S) = \inf_{C\in \mathcal{C}_S}\ell(C)$. (e denotes "exterior")
|
> The **outer content** of a set $S$ is the infimum of the lengths of all **finite covers** of $S$. $c_e(S) = \inf_{C\in \mathcal{C}_S}\ell(C)$. (e denotes "exterior")
|
||||||
|
|
||||||
Homework question: You cannot cover an interval $[a,b]$ with length $k$ with a finite cover of length strictly less than $k$.
|
Homework question: You cannot cover an interval $[a,b]$ with length $k$ with a finite cover of length strictly less than $k$.
|
||||||
|
|
||||||
@@ -150,7 +189,7 @@ $\mathbb{R}$ is not first species.
|
|||||||
>
|
>
|
||||||
> The **boundary** of a set $S$ is the set of all points in $S$ that are not in the interior of $S$. $\partial S = \overline{S} \setminus S^\circ$.
|
> The **boundary** of a set $S$ is the set of all points in $S$ that are not in the interior of $S$. $\partial S = \overline{S} \setminus S^\circ$.
|
||||||
|
|
||||||
#### Missing Thoerem 3.4
|
#### Theorem 3.4
|
||||||
|
|
||||||
Bolzano-Weierstrass Theorem:
|
Bolzano-Weierstrass Theorem:
|
||||||
|
|
||||||
@@ -190,12 +229,51 @@ For any open cover of a compact set, there exists a finite subcover.
|
|||||||
|
|
||||||
A set $S$ is **nowhere dense** if there are no open intervals in which $S$ is dense.
|
A set $S$ is **nowhere dense** if there are no open intervals in which $S$ is dense.
|
||||||
|
|
||||||
That is equivalent to $S'$ contains no open intervals.
|
That is equivalent to **$S'$ contains no open intervals**.
|
||||||
|
|
||||||
|
Note: If $S$ is nowhere dense, then $S^c$ is dense. But if $S$ is dense, $S^c$ is not necessarily nowhere dense. (Consider $\mathbb{Q}$)
|
||||||
|
|
||||||
### Perfect Set
|
### Perfect Set
|
||||||
|
|
||||||
A set $S$ is **perfect** if $S'=S$.
|
A set $S$ is **perfect** if $S'=S$.
|
||||||
|
|
||||||
|
Example: open intervals, Cantor set.
|
||||||
|
|
||||||
|
#### Cantor set
|
||||||
|
|
||||||
|
The Cantor set ($SVC(3)$) is the set of all real numbers in $[0,1]$ that can be represented in base 3 using only the digits 0 and 2.
|
||||||
|
|
||||||
|
The outer content of the Cantor set is 0.
|
||||||
|
|
||||||
|
#### Generalized Cantor set (SVC(n))
|
||||||
|
|
||||||
|
The outer content of $SVC(n)$ is $\frac{n-3}{n-2}$.
|
||||||
|
|
||||||
|
#### Lemma 4.4
|
||||||
|
|
||||||
|
Osgood's Lemma:
|
||||||
|
|
||||||
|
Let $G$ be a closed, bounded set and Let $G_1\subseteq G_2\subseteq \ldots$ and $G=\bigcup_{n=1}^{\infty} G_n$. Then $\lim_{n\to\infty} c_e(G_n)=c_e(G)$.
|
||||||
|
|
||||||
|
Key: Using Heine-Borel Theorem.
|
||||||
|
|
||||||
|
#### Theorem 4.5
|
||||||
|
|
||||||
|
Arzela-Osgood Theorem:
|
||||||
|
|
||||||
|
Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous, uniformly bounded functions on $[0,1]$ that converges pointwise to $0$. It follows that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lim_{n\to\infty}\int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n\to\infty} f_n(x) \, dx=0
|
||||||
|
$$
|
||||||
|
|
||||||
|
Key: Using Osgood's Lemma and do case analysis on bounded and unbounded parts of the Riemann-Stieltjes integral.
|
||||||
|
|
||||||
|
#### Theorem 4.7
|
||||||
|
|
||||||
|
Baire Category Theorem:
|
||||||
|
|
||||||
|
An open interval cannot be covered by a countable union of nowhere dense sets.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
362
pages/Math4121/Exam_reviews/Math4121_Final.md
Normal file
362
pages/Math4121/Exam_reviews/Math4121_Final.md
Normal file
@@ -0,0 +1,362 @@
|
|||||||
|
# Math4121 Final Review
|
||||||
|
|
||||||
|
## Guidelines
|
||||||
|
|
||||||
|
There is one question from Exam 2 material.
|
||||||
|
|
||||||
|
3 T/F from Exam 1 material.
|
||||||
|
|
||||||
|
The remaining questions cover the material since Exam 2 (Chapters 5 and 6 of Bressoud and my lecture notes for the final week).
|
||||||
|
|
||||||
|
The format of the exam is quite similar to Exam 2, maybe a tad longer (but not twice as long, don't worry).
|
||||||
|
|
||||||
|
## Chapter 5: Measure Theory
|
||||||
|
|
||||||
|
### Jordan Measure
|
||||||
|
|
||||||
|
> Content
|
||||||
|
>
|
||||||
|
> Let $\mathcal{C}_S^e$ be the set of all finite covers of $S$ by closed intervals ($S\subset C$, where $C$ is a finite union of closed intervals).
|
||||||
|
>
|
||||||
|
> Let $\mathcal{C}_S^i$ be the set of disjoint intervals that contained in $S$ ($\bigcup_{i=1}^n I_i\subset S$, where $I_i$ are disjoint intervals).
|
||||||
|
>
|
||||||
|
> Let $c_e(S)=\sup_{C\in\mathcal{C}_S^e} \sum_{i=1}^n |I_i|$ be the outer content of $S$.
|
||||||
|
>
|
||||||
|
> Let $c_i(S)=\inf_{I\in\mathcal{C}_S^i} \sum_{i=1}^n |I_i|$ be the inner content of $S$.
|
||||||
|
>
|
||||||
|
> _Here we use $|I|$ to denote the length of the interval $I$, in book we use volume but that's not important here._
|
||||||
|
>
|
||||||
|
> The content of $S$ is defined if $c(S)=c_e(S)=c_i(S)$
|
||||||
|
|
||||||
|
Note that from this definition, **for any pairwise disjoint collection of sets** $S_1, S_2, \cdots, S_N$, we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sum_{i=1}^N c_i(S_i)\leq c_i(\bigcup_{i=1}^N S_i)\leq c_e(\bigcup_{i=1}^N S_i)\leq \sum_{i=1}^N c_e(S_i)
|
||||||
|
$$
|
||||||
|
|
||||||
|
by $\sup$ and $\inf$ in the definition of $c_e(S)$ and $c_i(S)$.
|
||||||
|
|
||||||
|
#### Proposition 5.1
|
||||||
|
|
||||||
|
$$
|
||||||
|
c_e(S)=c_i(S)+c_e(\partial S)
|
||||||
|
$$
|
||||||
|
|
||||||
|
Note the boundary of $S$ is defined as $\partial S=\overline{S}\setminus S$.
|
||||||
|
|
||||||
|
Equivalently, $\forall x\in \partial S$, $\forall \epsilon>0$, $\exists p\notin S$ and $q\notin S$ s.t. $d(x,p)<\epsilon$ and $d(x,q)<\epsilon$.
|
||||||
|
|
||||||
|
So the content of $S$ is defined if and only if $c_e(\partial S)=0$.
|
||||||
|
|
||||||
|
> Jordan Measurable
|
||||||
|
>
|
||||||
|
> A set $S$ is Jordan measurable if and only if $c_e(\partial S)=0$, ($c(S)=c_e(S)=c_i(S)$)
|
||||||
|
|
||||||
|
#### Proposition 5.2
|
||||||
|
|
||||||
|
Finite additivity of content:
|
||||||
|
|
||||||
|
Let $S_1, S_2, \cdots, S_N$ be a finite collection of pairwise disjoint Jordan measurable sets.
|
||||||
|
|
||||||
|
$$
|
||||||
|
c(\bigcup_{i=1}^N S_i)=\sum_{i=1}^N c(S_i)
|
||||||
|
$$
|
||||||
|
|
||||||
|
Example for Jordan measure of sets
|
||||||
|
|
||||||
|
| Set | Inner Content | Outer Content | Content |
|
||||||
|
| --- | --- | --- | --- |
|
||||||
|
| $\emptyset$ | 0 | 0 | 0 |
|
||||||
|
| $\{q\},q\in \mathbb{R}$ | 0 | 0 | 0 |
|
||||||
|
| $\{\frac{1}{n}\}_{n=1}^\infty$ | 0 | 0 | 0 |
|
||||||
|
| $\{[n,n+\frac{1}{2^n}]\}_{n=1}^\infty$ | 1 | 1 | 1 |
|
||||||
|
| $SVC(3)$ | 0 | 1 | Undefined |
|
||||||
|
| $SVC(4)$ | 0 | $\frac{1}{2}$ | Undefined |
|
||||||
|
| $Q\cap [0,1]$ | 0 | 1 | Undefined |
|
||||||
|
| $[0,1]\setminus Q$ | 0 | 1 | Undefined |
|
||||||
|
| $[a,b], a<b\in \mathbb{R}$ | $b-a$ | $b-a$ | $b-a$ |
|
||||||
|
| $[a,b),a<b\in \mathbb{R}$ | $b-a$ | $b-a$ | $b-a$ |
|
||||||
|
| $(a,b],a<b\in \mathbb{R}$ | $b-a$ | $b-a$ | $b-a$ |
|
||||||
|
| $(a,b),a<b\in \mathbb{R}$ | $b-a$ | $b-a$ | $b-a$ |
|
||||||
|
|
||||||
|
### Borel Measure
|
||||||
|
|
||||||
|
Our desired property of measures:
|
||||||
|
|
||||||
|
1. Measure of interval is the length of the interval. $m([a,b])=m((a,b))=m([a,b))=m((a,b])=b-a$
|
||||||
|
|
||||||
|
2. Countable additivity: If $S_1, S_2, \cdots, S_N$ are pairwise disjoint Borel measurable sets, then $m(\bigcup_{i=1}^N S_i)=\sum_{i=1}^N m(S_i)$
|
||||||
|
|
||||||
|
3. Closure under set minus: If $S$ is Borel measurable and $T$ is Borel measurable, then $S\setminus T$ is Borel measurable with $m(S\setminus T)=m(S)-m(T)$
|
||||||
|
|
||||||
|
#### Borel Measurable Sets
|
||||||
|
|
||||||
|
$\mathcal{B}$ is the smallest $\sigma$-algebra that contains all closed intervals.
|
||||||
|
|
||||||
|
> Sigma algebra: A $\sigma$-algebra is a collection of sets that is closed under **countable** union, intersection, and complement.
|
||||||
|
>
|
||||||
|
> That is:
|
||||||
|
>
|
||||||
|
> 1. $\emptyset\in \mathcal{B}$
|
||||||
|
> 2. If $A\in \mathcal{B}$, then $A^c\in \mathcal{B}$
|
||||||
|
> 3. If $A_1, A_2, \cdots, A_N\in \mathcal{B}$, then $\bigcup_{i=1}^N A_i\in \mathcal{B}$
|
||||||
|
|
||||||
|
#### Proposition 5.3
|
||||||
|
|
||||||
|
Borel measurable sets does not contain all Jordan measurable sets.
|
||||||
|
|
||||||
|
Proof by cardinality of sets.
|
||||||
|
|
||||||
|
Example for Borel measure of sets
|
||||||
|
|
||||||
|
| Set | Borel Measure |
|
||||||
|
| --- | --- |
|
||||||
|
| $\emptyset$ | 0 |
|
||||||
|
| $\{q\},q\in \mathbb{R}$ | 0 |
|
||||||
|
| $\{\frac{1}{n}\}_{n=1}^\infty$ | 0 |
|
||||||
|
| $\{[n,n+\frac{1}{2^n}]\}_{n=1}^\infty$ | 1 |
|
||||||
|
| $SVC(3)$ | 0 |
|
||||||
|
| $SVC(4)$ | 0 |
|
||||||
|
| $Q\cap [0,1]$ | 0 |
|
||||||
|
| $[0,1]\setminus Q$ | 1 |
|
||||||
|
| $[a,b], a<b\in \mathbb{R}$ | $b-a$ |
|
||||||
|
| $[a,b),a<b\in \mathbb{R}$ | $b-a$ |
|
||||||
|
| $(a,b],a<b\in \mathbb{R}$ | $b-a$ |
|
||||||
|
| $(a,b),a<b\in \mathbb{R}$ | $b-a$ |
|
||||||
|
|
||||||
|
|
||||||
|
### Lebesgue Measure
|
||||||
|
|
||||||
|
> Lebesgue measure
|
||||||
|
>
|
||||||
|
> Let $\mathcal{C}$ be the set of all countable covers of $S$.
|
||||||
|
>
|
||||||
|
> The Lebesgue outer measure of $S$ is defined as:
|
||||||
|
>
|
||||||
|
> $$m_e(S)=\inf_{C\in\mathcal{C}} \sum_{i=1}^\infty |I_i|$$
|
||||||
|
>
|
||||||
|
> If $S\subset[a,b]$, then the inner measure of $S$ is defined as:
|
||||||
|
>
|
||||||
|
> $$m_i(S)=(b-a)-m_e([a,b]\setminus S)$$
|
||||||
|
>
|
||||||
|
> If $m_i(S)=m_e(S)$, then $S$ is Lebesgue measurable.
|
||||||
|
|
||||||
|
#### Proposition 5.4
|
||||||
|
|
||||||
|
Subadditivity of Lebesgue outer measure:
|
||||||
|
|
||||||
|
For any collection of sets $S_1, S_2, \cdots, S_N$,
|
||||||
|
|
||||||
|
$$m_e(\bigcup_{i=1}^N S_i)\leq \sum_{i=1}^N m_e(S_i)$$
|
||||||
|
|
||||||
|
#### Theorem 5.5
|
||||||
|
|
||||||
|
If $S$ is bounded, then any of the following conditions imply that $S$ is Lebesgue measurable:
|
||||||
|
|
||||||
|
1. $m_e(S)=0$
|
||||||
|
2. $S$ is countable (measure of countable set is 0)
|
||||||
|
3. $S$ is an interval
|
||||||
|
|
||||||
|
> Alternative definition of Lebesgue measure
|
||||||
|
>
|
||||||
|
> The outer measure of $S$ is defined as the infimum of all the open sets that contain $S$.
|
||||||
|
>
|
||||||
|
> The inner measure of $S$ is defined as the supremum of all the closed sets that are contained in $S$.
|
||||||
|
|
||||||
|
#### Theorem 5.6
|
||||||
|
|
||||||
|
Caratheodory's criterion:
|
||||||
|
|
||||||
|
A set $S$ is Lebesgue measurable if and only if for any set $X$ with finite outer measure,
|
||||||
|
|
||||||
|
$$m_e(X-S)=m_e(X)-m_e(X\cap S)$$
|
||||||
|
|
||||||
|
#### Lemma 5.7
|
||||||
|
|
||||||
|
Local additivity of Lebesgue outer measure:
|
||||||
|
|
||||||
|
If $I_1, I_2, \cdots, I_N$ are any countable collection of **pairwise disjoint intervals** and $S$ is a bounded set, then
|
||||||
|
|
||||||
|
$$
|
||||||
|
m_e\left(S\cup \bigcup_{i=1}^N I_i\right)=\sum_{i=1}^N m_e(S\cap I_i)
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 5.8
|
||||||
|
|
||||||
|
Countable additivity of Lebesgue outer measure:
|
||||||
|
|
||||||
|
If $S_1, S_2, \cdots, S_N$ are any countable collection of pairwise disjoint Lebesgue measurable sets, **whose union has a finite outer measure,** then
|
||||||
|
|
||||||
|
$$
|
||||||
|
m_e\left(\bigcup_{i=1}^N S_i\right)=\sum_{i=1}^N m_e(S_i)
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 5.9
|
||||||
|
|
||||||
|
Any finite union or intersection of Lebesgue measurable sets is Lebesgue measurable.
|
||||||
|
|
||||||
|
#### Theorem 5.10
|
||||||
|
|
||||||
|
Any countable union or intersection of Lebesgue measurable sets is Lebesgue measurable.
|
||||||
|
|
||||||
|
#### Corollary 5.12
|
||||||
|
|
||||||
|
Limit of a monotone sequence of Lebesgue measurable sets is Lebesgue measurable.
|
||||||
|
|
||||||
|
If $S_1\subseteq S_2\subseteq S_3\subseteq \cdots$ are Lebesgue measurable sets, then $\bigcup_{i=1}^\infty S_i$ is Lebesgue measurable. And $m(\bigcup_{i=1}^\infty S_i)=\lim_{i\to\infty} m(S_i)$
|
||||||
|
|
||||||
|
If $S_1\supseteq S_2\supseteq S_3\supseteq \cdots$ are Lebesgue measurable sets, **and $S_1$ has finite measure**, then $\bigcap_{i=1}^\infty S_i$ is Lebesgue measurable. And $m(\bigcap_{i=1}^\infty S_i)=\lim_{i\to\infty} m(S_i)$
|
||||||
|
|
||||||
|
#### Theorem 5.13
|
||||||
|
|
||||||
|
Non-measurable sets (under axiom of choice)
|
||||||
|
|
||||||
|
Note that $(0,1)\subseteq \bigcup_{q\in \mathbb{Q}\cap (-1,1)}(\mathcal{N}+q)\subseteq (-1,2)$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\bigcup_{q\in \mathbb{Q}\cap (-1,1)}(\mathcal{N}+q)
|
||||||
|
$$
|
||||||
|
|
||||||
|
is not Lebesgue measurable.
|
||||||
|
|
||||||
|
## Chapter 6: Lebesgue Integration
|
||||||
|
|
||||||
|
### Lebesgue Integral
|
||||||
|
|
||||||
|
Let the partition on y-axis be $l=l_0<l_1<\cdots<l_n=L$, and $S_i=\{x|l_i<f(x)<l_{i+1}\}$
|
||||||
|
|
||||||
|
The Lebesgue integral of $f$ over $[a,b]$ is bounded by:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sum_{i=0}^{n-1} l_i m(S_i)\leq \int_a^b f(x) \, dx\leq \sum_{i=0}^{n-1} l_{i+1} m(S_i)
|
||||||
|
$$
|
||||||
|
|
||||||
|
> Definition of measurable function:
|
||||||
|
>
|
||||||
|
> A function $f$ is measurable if for all $c\in \mathbb{R}$, the set $\{x\in [a,b]|f(x)>c\}$ is Lebesgue measurable.
|
||||||
|
>
|
||||||
|
> Equivalently, a function $f$ is measurable if any of the following conditions hold:
|
||||||
|
>
|
||||||
|
> 1. For all $c\in \mathbb{R}$, the set $\{x\in [a,b]|f(x)>c\}$ is Lebesgue measurable.
|
||||||
|
> 2. For all $c\in \mathbb{R}$, the set $\{x\in [a,b]|f(x)\geq c\}$ is Lebesgue measurable.
|
||||||
|
> 3. For all $c\in \mathbb{R}$, the set $\{x\in [a,b]|f(x)<c\}$ is Lebesgue measurable.
|
||||||
|
> 4. For all $c\in \mathbb{R}$, the set $\{x\in [a,b]|f(x)\leq c\}$ is Lebesgue measurable.
|
||||||
|
> 5. For all $c<d\in \mathbb{R}$, the set $\{x\in [a,b]|c\leq f(x)<d\}$ is Lebesgue measurable.
|
||||||
|
>
|
||||||
|
> Prove by using the fact$\{x\in [a,b]|f(x)\geq c\}=\bigcap_{n=1}^\infty \{x\in [a,b]|f(x)>c-\frac{1}{n}\}$
|
||||||
|
|
||||||
|
#### Proposition 6.3
|
||||||
|
|
||||||
|
If $f,g$ is a measurable function, and $k\in \mathbb{R}$, then $f+g,kf,f^2,fg,|f|$ is measurable.
|
||||||
|
|
||||||
|
> Definition of almost everywhere:
|
||||||
|
>
|
||||||
|
> A property holds almost everywhere if it holds everywhere except for a set of Lebesgue measure 0.
|
||||||
|
|
||||||
|
#### Proposition 6.4
|
||||||
|
|
||||||
|
If $f_n$ is a sequence of measurable functions, then $\limsup_{n\to\infty} f_n, \liminf_{n\to\infty} f_n$ is measurable.
|
||||||
|
|
||||||
|
#### Theorem 6.5
|
||||||
|
|
||||||
|
Limit of measurable functions is measurable.
|
||||||
|
|
||||||
|
> Definition of simple function:
|
||||||
|
>
|
||||||
|
> A simple function is a linear combination of indicator functions of Lebesgue measurable sets.
|
||||||
|
|
||||||
|
#### Theorem 6.6
|
||||||
|
|
||||||
|
Measurable function as limit of simple functions.
|
||||||
|
|
||||||
|
$f$ is a measurable function if and only if ffthere exists a sequence of simple functions $f_n$ s.t. $f_n\to f$ almost everywhere.
|
||||||
|
|
||||||
|
### Integration
|
||||||
|
|
||||||
|
#### Proposition 6.10
|
||||||
|
|
||||||
|
Let $\phi,\psi$ be simple functions, $c\in \mathbb{R}$ and $E=E_1\cup E_2$ where $E_1\cap E_2=\emptyset$.
|
||||||
|
|
||||||
|
Then
|
||||||
|
|
||||||
|
1. $\int_E \phi(x) \, dx=\int_{E_1} \phi(x) \, dx+\int_{E_2} \phi(x) \, dx$
|
||||||
|
2. $\int_E (c\phi)(x) \, dx=c\int_E \phi(x) \, dx$
|
||||||
|
3. $\int_E (\phi+\psi)(x) \, dx=\int_E \phi(x) \, dx+\int_E \psi(x) \, dx$
|
||||||
|
4. If $\phi\leq \psi$ for all $x\in E$, then $\int_E \phi(x) \, dx\leq \int_E \psi(x) \, dx$
|
||||||
|
|
||||||
|
> Definition of Lebesgue integral of simple function:
|
||||||
|
>
|
||||||
|
> Let $\phi$ be a simple function, $\phi=\sum_{i=1}^n l_i \chi_{S_i}$
|
||||||
|
>
|
||||||
|
> $$\int_E \phi(x) \, dx=\sum_{i=1}^n l_i m(S_i\cap E)$$
|
||||||
|
|
||||||
|
> Definition of Lebesgue integral of measurable function:
|
||||||
|
>
|
||||||
|
> Let $f$ be a nonnegative measurable function, then
|
||||||
|
>
|
||||||
|
> $$\int_E f(x) \, dx=\sup_{\phi\leq f} \int_E \phi(x) \, dx$$
|
||||||
|
>
|
||||||
|
> If $f$ is not nonnegative, then
|
||||||
|
>
|
||||||
|
> $$\int_E f(x) \, dx=\int_E f^+(x) \, dx-\int_E f^-(x) \, dx$$
|
||||||
|
>
|
||||||
|
> where $f^+(x)=\max(f(x),0)$ and $f^-(x)=\max(-f(x),0)$
|
||||||
|
|
||||||
|
#### Proposition 6.12
|
||||||
|
|
||||||
|
Integral over a set of measure 0 is 0.
|
||||||
|
|
||||||
|
#### Theorem 6.13
|
||||||
|
|
||||||
|
If a nonnegative measurable function $f$ has integral 0 on a set $E$, then $f(x)=0$ almost everywhere on $E$.
|
||||||
|
|
||||||
|
#### Theorem 6.14
|
||||||
|
|
||||||
|
Monotone convergence theorem:
|
||||||
|
|
||||||
|
If $f_n$ is a sequence of monotone increasing measurable functions and $f_n\to f$ almost everywhere, and $\exists A>0$ s.t. $|\int_E f_n(x) \, dx|\leq A$ for all $n$, then $f(x)=\lim_{n\to\infty} f_n(x)$ exists almost everywhere and it's integrable on $E$ with
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_E f(x) \, dx=\lim_{n\to\infty} \int_E f_n(x) \, dx
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 6.19
|
||||||
|
|
||||||
|
Dominated convergence theorem:
|
||||||
|
|
||||||
|
If $f_n$ is a sequence of integrable functions and $f_n\to f$ almost everywhere, and there exists a nonnegative integrable function $g$ s.t. $|f_n(x)|\leq g(x)$ for all $x\in E$ and all $n$, then $f(x)=\lim_{n\to\infty} f_n(x)$ exists almost everywhere and it's integrable on $E$ with
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_E f(x) \, dx=\lim_{n\to\infty} \int_E f_n(x) \, dx
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Theorem 6.20
|
||||||
|
|
||||||
|
Fatou's lemma:
|
||||||
|
|
||||||
|
If $f_n$ is a sequence of nonnegative integrable functions, then
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_E \liminf_{n\to\infty} f_n(x) \, dx\leq \liminf_{n\to\infty} \int_E f_n(x) \, dx
|
||||||
|
$$
|
||||||
|
|
||||||
|
> Definition of Hardy-Littlewood maximal function
|
||||||
|
>
|
||||||
|
> Given integrable $f$m and an interval $I$, look at the averaging operator $A_I f(x)=\frac{\chi_I(x)}{m(I)}\int_I f(y)dy$.
|
||||||
|
>
|
||||||
|
> The maximal function is defined as
|
||||||
|
>
|
||||||
|
> $$f^*(x)=\sup_{I \text{ is an open interval}} A_I f(x)$$
|
||||||
|
|
||||||
|
### Lebesgue's Fundamental theorem of calculus
|
||||||
|
|
||||||
|
If $f$ is Lebesgue integrable on $[a,b]$, then $F(x) = \int_a^x f(t)dt$ is differentiable **almost everywhere** and $F'(x) = f(x)$ **almost everywhere**.
|
||||||
|
|
||||||
|
Outline:
|
||||||
|
|
||||||
|
Let $\lambda,\epsilon > 0$. Find $g$ continuous such that $\int_{\mathbb{R}}|f-g|dm < \frac{\lambda \epsilon}{5}$.
|
||||||
|
|
||||||
|
To control $A_I f(x)-f(x)=(A_I(f-g)(x))+(A_I g(x)-g(x))+(g(x)-f(x))$, we need to estimate the three terms separately.
|
||||||
|
|
||||||
|
Our goal is to show that $\lim_{r\to 0^+}\sup_{I\text{ is open interval}, m(I)<r, x\in I}|A_I f(x)-f(x)|=0$. For $x$ almost every $x\in[a,b]$.
|
||||||
|
|
||||||
@@ -89,12 +89,16 @@ x-\lfloor x \rfloor & x \in [\lfloor x \rfloor, \lfloor x \rfloor + \frac{1}{2})
|
|||||||
x-\lfloor x \rfloor - 1 & x \in (\lfloor x \rfloor + \frac{1}{2}, \lfloor x \rfloor + 1] \end{cases}
|
x-\lfloor x \rfloor - 1 & x \in (\lfloor x \rfloor + \frac{1}{2}, \lfloor x \rfloor + 1] \end{cases}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
).png)
|
||||||
|
|
||||||
We define
|
We define
|
||||||
|
|
||||||
$$
|
$$
|
||||||
f(x) = \sum_{n=1}^{\infty} \frac{((nx))}{n^2}=\lim_{N\to\infty}\sum_{n=1}^{N} \frac{((nx))}{n^2}
|
f(x) = \sum_{n=1}^{\infty} \frac{((nx))}{n^2}=\lim_{N\to\infty}\sum_{n=1}^{N} \frac{((nx))}{n^2}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
).png)
|
||||||
|
|
||||||
(i) The series converges uniformly over $x\in[0,1]$.
|
(i) The series converges uniformly over $x\in[0,1]$.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
|
|||||||
@@ -22,7 +22,23 @@ $$
|
|||||||
|
|
||||||
However, the quarter cantor set removes $\frac{3^{n-1}}{4^n}$ of the total "content", and the total length removed after infinitely many steps is:
|
However, the quarter cantor set removes $\frac{3^{n-1}}{4^n}$ of the total "content", and the total length removed after infinitely many steps is:
|
||||||
|
|
||||||
_skip this part, some error occurred._
|
Every time we remove $\frac{1}{4^n}$ of the remaining intervals. So on each layer, we remove $\frac{2^{n-1}}{4^n}$ of the total "content".
|
||||||
|
|
||||||
|
So the total length removed is:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
1-\frac{1}{4}-\frac{2}{4^2}-\frac{2^2}{4^3}-\cdots&=1-\frac{1}{4}\sum_{n=0}^{\infty} \left(\frac{2}{4}\right)^n\\
|
||||||
|
&=1-\frac{1}{4}\cdot\frac{1}{1-\frac{2}{4}}\\
|
||||||
|
&=1-\frac{1}{4}\cdot\frac{4}{2}\\
|
||||||
|
&=1-\frac{1}{2}\\
|
||||||
|
&=\frac{1}{2}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Generalized Cantor set (SVC(n))
|
||||||
|
|
||||||
|
The outer content of $SVC(n)$ is $\frac{n-3}{n-2}$.
|
||||||
|
|
||||||
#### Monotonicity of outer content
|
#### Monotonicity of outer content
|
||||||
|
|
||||||
|
|||||||
@@ -22,13 +22,13 @@ Since $c_e(S)=0$ and $\partial S=[0,1]$, $c_i(S)=1$.
|
|||||||
|
|
||||||
So $c_e(\partial S)=1\neq 0$.
|
So $c_e(\partial S)=1\neq 0$.
|
||||||
|
|
||||||
2. SVC(3) is Jordan measurable.
|
2. $SVC(3)$ is Jordan measurable.
|
||||||
|
|
||||||
Since $c_e(S)=0$ and $\partial S=0$, $c_i(S)=0$. The outer content of the cantor set is $0$.
|
Since $c_e(S)=0$ and $\partial S=0$, $c_i(S)=0$. The outer content of the cantor set is $0$.
|
||||||
|
|
||||||
> Any set or subset of a set with $c_e(S)=0$ is Jordan measurable.
|
> Any set or subset of a set with $c_e(S)=0$ is Jordan measurable.
|
||||||
|
|
||||||
3. SVC(4)
|
3. $SVC(4)$
|
||||||
|
|
||||||
At each step, we remove $2^n$ intervals of length $\frac{1}{4^n}$.
|
At each step, we remove $2^n$ intervals of length $\frac{1}{4^n}$.
|
||||||
|
|
||||||
|
|||||||
@@ -75,30 +75,9 @@ Let $f,g\in \mathscr{R}(\alpha)$ on $[a, b]$.
|
|||||||
|
|
||||||
Proof:
|
Proof:
|
||||||
|
|
||||||
Property (aa), (b), (e) holds for Riemann Sums themselves.
|
**Property (aa), (b), (e) holds for Riemann Sums themselves.**
|
||||||
|
|
||||||
$$
|
**For (a)**, Set $h(x)=f(x)+g(x)$. Then $h\in \mathscr{R}(\alpha)$ on $[a, b]$ and we will show $\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$.
|
||||||
\sup cf(x) = c\sup f(x)\quad \forall c\in \mathbb{R}
|
|
||||||
$$
|
|
||||||
|
|
||||||
$$
|
|
||||||
U(P,cf, \alpha) = cU(P,f,\alpha)
|
|
||||||
$$
|
|
||||||
|
|
||||||
For (b), notice that if $f(x)\leq g(x)$, then $\sup f(x)\leq \sup g(x)$, $U(P,f,\alpha)\leq U(P,g,\alpha)$. and $L(P,f,\alpha)\leq L(P,g,\alpha)$.
|
|
||||||
|
|
||||||
For (e), notice that
|
|
||||||
|
|
||||||
$$
|
|
||||||
\begin{aligned}
|
|
||||||
\Delta (\alpha+\beta)_i &= \alpha(x_i)-\alpha(x_{i-1})+\beta(x_i)-\beta(x_{i-1}) \\
|
|
||||||
&= \Delta \alpha_i + \Delta \beta_i
|
|
||||||
\end{aligned}
|
|
||||||
$$
|
|
||||||
|
|
||||||
(c),(d) are left as homework.
|
|
||||||
|
|
||||||
For (a), Set $h(x)=f(x)+g(x)$. Then $h\in \mathscr{R}(\alpha)$ on $[a, b]$ and we will show $\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$.
|
|
||||||
|
|
||||||
Since $f,g\in \mathscr{R}(\alpha)$ on $[a, b]$, for any $\epsilon > 0$, there exists a partition $P_1,P_2$ of $[a, b]$ such that $U(f,P_1,\alpha)-L(f,P_1,\alpha) < \epsilon$ and $U(g,P_2,\alpha)-L(g,P_2,\alpha) < \epsilon$.
|
Since $f,g\in \mathscr{R}(\alpha)$ on $[a, b]$, for any $\epsilon > 0$, there exists a partition $P_1,P_2$ of $[a, b]$ such that $U(f,P_1,\alpha)-L(f,P_1,\alpha) < \epsilon$ and $U(g,P_2,\alpha)-L(g,P_2,\alpha) < \epsilon$.
|
||||||
|
|
||||||
@@ -108,4 +87,76 @@ So $U(P,h,\alpha)\leq U(P,f,\alpha)+U(P,g,\alpha)\leq \int_a^b f d\alpha + \int_
|
|||||||
|
|
||||||
Since $\epsilon$ is arbitrary, $\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$.
|
Since $\epsilon$ is arbitrary, $\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$.
|
||||||
|
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sup cf(x) = c\sup f(x)\quad \forall c\in \mathbb{R}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
U(P,cf, \alpha) = cU(P,f,\alpha)
|
||||||
|
$$
|
||||||
|
|
||||||
|
**For (b)**, notice that if $f(x)\leq g(x)$, then $\sup f(x)\leq \sup g(x)$, $U(P,f,\alpha)\leq U(P,g,\alpha)$. and $L(P,f,\alpha)\leq L(P,g,\alpha)$.
|
||||||
|
|
||||||
|
**For (c)**, if $f\in \mathscr{R}(\alpha)$ on $[a,b]$, and if $a<c<b$, then $f\in \mathscr{R}$ on $[a,c]$ and $[c,b]$, and
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int_a^c f d\alpha + \int_c^b f d\alpha=\int_a^b f d\alpha
|
||||||
|
$$
|
||||||
|
|
||||||
|
For every partition $P=\{x_0,x_1,\cdots,x_n\}$ of $[a,b]$, we have a refinement $P^*=P\cup\{c\}$ of $[a,b]$. Let $P_1=\{x_0,x_1,\cdots,x_j,c\}$ and $P_2=\{c,x_{j+1},\cdots,x_n\}$ be the partitions of $[a,c]$ and $[c,b]$ respectively. So
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
U(P^*,f,\alpha)&=\sum_{i=0}^{n}M_i(x_i-x_{i+1})\\
|
||||||
|
&=M_c(c-x_j)+\sum_{i=0}^{j-1}M_i(x_i-x_{i+1})+\sum_{i=j+1}^{n}M_i(x_i-x_{i+1})\\
|
||||||
|
&=U(P_1,f,\alpha)+U(P_2,f,\alpha)
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
and
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
L(P^*,f,\alpha)&=\sum_{i=0}^{n}m_i(x_i-x_{i+1})\\
|
||||||
|
&=m_c(x_j-c)+\sum_{i=0}^{j-1}m_i(x_i-x_{i+1})+\sum_{i=j+1}^{n-1}m_i(x_i-x_{i+1})\\
|
||||||
|
&=L(P_1,f,\alpha)+L(P_2,f,\alpha)
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Since $P^*$ is a refinement of $P$, by \textbf{Theorem 6.4}, we have $U(P^*,f,\alpha)\leq U(P,f,\alpha)$ and $L(P^*,f,\alpha)\geq L(P,f,\alpha)$.
|
||||||
|
|
||||||
|
So $\int_a^c f d\alpha+\int_c^b f d\alpha\leq U(P^*,f,\alpha)\leq U(P,f,\alpha)=\int_a^b f d\alpha$.
|
||||||
|
|
||||||
|
Similarly, we have $\int_a^c f d\alpha+\int_c^b f d\alpha\geq L(P^*,f,\alpha)\geq L(P,f,\alpha)=\int_a^b f d\alpha$.
|
||||||
|
|
||||||
|
Therefore, $\int_a^c f d\alpha+\int_c^b f d\alpha=\int_a^b f d\alpha$.
|
||||||
|
|
||||||
|
**For (d)**, if $f\in \mathscr{R}(\alpha)$ on $[a,b]$, and if $|f(x)| \leq M$ on $[a,b]$, then
|
||||||
|
$$
|
||||||
|
\left|\int_a^b f d\alpha\right| \leq M(\alpha(b)-\alpha(a))
|
||||||
|
$$
|
||||||
|
|
||||||
|
Since $|f(x)|\leq M$ on $[a,b]$, $\forall x\in [a,b]$, we have $f(x)\in [-M,M]$ on $[a,b]$. So $\sup|f(x)|\leq M$ and $\inf|f(x)|\leq M$. Since $L(P,f,\alpha)\leq \int_a^b f d\alpha\leq U(P,f,\alpha)$, we have
|
||||||
|
|
||||||
|
So
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
\left|\int_a^b f d\alpha\right|&\leq \max\left\{|L(P,f,\alpha)|,|U(P,f,\alpha)|\right\}\\
|
||||||
|
&=\max\left\{\sum_{i=0}^{n-1}|M_i|\Delta x_i,\sum_{i=0}^{n-1}|m_i|\Delta x_i\right\}\\
|
||||||
|
&\leq \sum_{i=0}^{n-1}\max\{|M_i|,|m_i|\}\Delta x_i\\
|
||||||
|
&\leq \sum_{i=0}^{n-1}M\Delta x_i\\
|
||||||
|
&=M(\alpha(b)-\alpha(a))
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Therefore, $\left|\int_a^b f d\alpha\right| \leq M(\alpha(b)-\alpha(a))$.
|
||||||
|
|
||||||
|
**For (e)**, notice that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
\Delta (\alpha+\beta)_i &= \alpha(x_i)-\alpha(x_{i-1})+\beta(x_i)-\beta(x_{i-1}) \\
|
||||||
|
&= \Delta \alpha_i + \Delta \beta_i
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
QED
|
QED
|
||||||
BIN
public/Math4121/sum_y=((x)).png
Normal file
BIN
public/Math4121/sum_y=((x)).png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 16 KiB |
BIN
public/Math4121/y=((x)).png
Normal file
BIN
public/Math4121/y=((x)).png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 17 KiB |
Reference in New Issue
Block a user