Update CSE442T_L20.md
This commit is contained in:
@@ -1,6 +1,6 @@
|
|||||||
# Lecture 20
|
# Lecture 20
|
||||||
|
|
||||||
## Construction of CRHF (Compression Resistant Hash Function)
|
## Construction of CRHF (Collision Resistant Hash Function)
|
||||||
|
|
||||||
Let $h: \{0, 1\}^{n+1} \to \{0, 1\}^n$ be a CRHF.
|
Let $h: \{0, 1\}^{n+1} \to \{0, 1\}^n$ be a CRHF.
|
||||||
|
|
||||||
@@ -24,7 +24,9 @@ Under the discrete log assumption, $H$ is a CRHF.
|
|||||||
- It is easy to compute
|
- It is easy to compute
|
||||||
- Compressing by 1 bit
|
- Compressing by 1 bit
|
||||||
|
|
||||||
Proof it is a CRHF:
|
Proof:
|
||||||
|
|
||||||
|
The hash function $h$ is a CRHF
|
||||||
|
|
||||||
Suppose there exists an adversary $\mathcal{A}$ that can break $h$ with non-negligible probability $\mu$.
|
Suppose there exists an adversary $\mathcal{A}$ that can break $h$ with non-negligible probability $\mu$.
|
||||||
|
|
||||||
@@ -67,3 +69,106 @@ $$
|
|||||||
So $\mathcal{B}$ can break the discrete log assumption with non-negligible probability $\mu(n)$, which contradicts the discrete log assumption.
|
So $\mathcal{B}$ can break the discrete log assumption with non-negligible probability $\mu(n)$, which contradicts the discrete log assumption.
|
||||||
|
|
||||||
So $h$ is a CRHF.
|
So $h$ is a CRHF.
|
||||||
|
|
||||||
|
EOP
|
||||||
|
|
||||||
|
To compress by more, say $h_k:{0,1}^n\to \{0,1\}^{n-k},k\geq 1$, then we can use $h: \{0,1\}^{n+1}\to \{0,1\}^n$ multiple times.
|
||||||
|
|
||||||
|
$$
|
||||||
|
h_k(x)=h(h(\cdots(h(x)))\cdots)=h^{k}(x)
|
||||||
|
$$
|
||||||
|
|
||||||
|
To find a collision of $h_k$, the adversary must find a collision of $h$.
|
||||||
|
|
||||||
|
### Application of CRHF to Digital Signature
|
||||||
|
|
||||||
|
Digital signature scheme on $\{0,1\}^*$ for a fixed security parameter $n$. (one-time secure)
|
||||||
|
|
||||||
|
- Use Digital Signature Scheme on $\{0,1\}^{n}$: $Gen, Sign, Ver$.
|
||||||
|
- Use CRHF family $\{h_i:\{0,1\}^*\to \{0,1\}^n\}_{i\in I}$
|
||||||
|
|
||||||
|
$Gen'(1^n):(pk,sk)\gets Gen(1^n)$, choose $i\in I$ uniformly at random.
|
||||||
|
|
||||||
|
$sk'=(sk,i)$
|
||||||
|
|
||||||
|
$Sign'_{sk'}(m):\sigma\gets Sign_{sk}(h_i(m))$, return $(i,\sigma)$
|
||||||
|
|
||||||
|
$pk'=(pk,i)$
|
||||||
|
|
||||||
|
$Ver'_{pk'}(m,(i,\sigma)):Ver_{pk}(m,\sigma)$ and $i\in I$
|
||||||
|
|
||||||
|
One-time secure:
|
||||||
|
|
||||||
|
- Given that ($Gen,Sign,Ver$) is one-time secure
|
||||||
|
- $h$ is a CRHF
|
||||||
|
|
||||||
|
Then ($Gen',Sign',Ver'$) is one-time secure.
|
||||||
|
|
||||||
|
Idea of Proof:
|
||||||
|
|
||||||
|
If the digital signature scheme ($Gen',Sign',Ver'$) is not one-time secure, then there exists an adversary $\mathcal{A}$ which can ask oracle for one signature on $m_1$ and receive $\sigma_1=Sign'_{sk'}(m_1)=Sign_{sk}(h_i(m_1))$.
|
||||||
|
|
||||||
|
- It outputs $m_2\neq m_1$ and receives $\sigma_2=Sign'_{sk'}(m_2)=Sign_{sk}(h_i(m_2))$.
|
||||||
|
- If $Ver'_{pk'}(m_2,\sigma_2)$ is accepted, then $Ver_{pk}(h_i(m_2),\sigma_2)$ is accepted and $i\in I$.
|
||||||
|
|
||||||
|
There are two cases to consider:
|
||||||
|
|
||||||
|
Case 1: $h_i(m_1)=h_i(m_2)$, Then $\mathcal{A}$ finds a collision of $h$.
|
||||||
|
|
||||||
|
Case 2: $h_i(m_1)\neq h_i(m_2)$, Then $\mathcal{A}$ produced valid signature on $h_i(m_2)$ after only seeing $Sign'_{sk'}(m_1)\neq Sign'_{sk'}(m_2)$. This contradicts the one-time secure of ($Gen,Sign,Ver$).
|
||||||
|
|
||||||
|
EOP
|
||||||
|
|
||||||
|
## Many-time Secure Digital Signature
|
||||||
|
|
||||||
|
Using one-time secure digital signature scheme on $\{0,1\}^*$ to construct many-time secure digital signature scheme on $\{0,1\}^*$.
|
||||||
|
|
||||||
|
Let $Gen,Sign,Ver$ defined as follows:
|
||||||
|
|
||||||
|
$Gen(1^n):(pk,sk)\gets (pk_0,sk_0)
|
||||||
|
|
||||||
|
For the first message:
|
||||||
|
|
||||||
|
$(pk_1,sk_1)\gets Gen'(1^n)$
|
||||||
|
|
||||||
|
$Sign_{sk}(m_1):\sigma_1\gets Sign_{sk_0}(m_1||pk_1)$, return $\sigma_1'=(1,m_1,pk_1,\sigma_1)$
|
||||||
|
|
||||||
|
We need to remember state $\sigma_1'$ and $sk_1$ for the second message.
|
||||||
|
|
||||||
|
For the second message:
|
||||||
|
|
||||||
|
$(pk_2,sk_2)\gets Gen'(1^n)$
|
||||||
|
|
||||||
|
$Sign_{sk}(m_2):\sigma_2\gets Sign_{sk_1}(m_2||pk_0)$, return $\sigma_2'=(0,m_2,pk_0,\sigma_1')$
|
||||||
|
|
||||||
|
We need to remember state $\sigma_2'$ and $sk_2$ for the third message.
|
||||||
|
|
||||||
|
...
|
||||||
|
|
||||||
|
For the $i$-th message:
|
||||||
|
|
||||||
|
$(pk_i,sk_i)\gets Gen'(1^n)$
|
||||||
|
|
||||||
|
$Sign_{sk}(m_i):\sigma_i\gets Sign_{sk_{i-1}}(m_i||pk_{i-1})$, return $\sigma_i'=(i-1,m_i,pk_{i-1},\sigma_{i-1}')$
|
||||||
|
|
||||||
|
We need to remember state $\sigma_i'$ and $sk_i$ for the $(i+1)$-th message.
|
||||||
|
|
||||||
|
$Ver_{pk}:(m_i,(i,m_i,p_k,\sigma_i,\sigma_{i-1}))$ Will need to verify all the states public keys so far.
|
||||||
|
|
||||||
|
$$
|
||||||
|
Ver_{pk_0}(m_1||pk_1, \sigma_1) = \text{ Accept}\\
|
||||||
|
Ver_{pk_1}(m_2||pk_2, \sigma_2) = \text{ Accept}\\
|
||||||
|
\vdots\\
|
||||||
|
Ver_{pk_i}(m_i||pk_i, \sigma_i) = \text{ Accept}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Proof on homework.
|
||||||
|
|
||||||
|
Drawbacks:
|
||||||
|
|
||||||
|
- Signature size and verification time grows linearly with the number of messages.
|
||||||
|
- Memory for signing grows linearly with the number of messages.
|
||||||
|
|
||||||
|
These can be fixed.
|
||||||
|
|
||||||
|
Question: Note that the signature signing message longer than the public key, which is impossible in Lamport Scheme.
|
||||||
|
|||||||
Reference in New Issue
Block a user