From 1ee87c63e75884632227be595f8da4e365bf6319 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Tue, 4 Feb 2025 11:01:52 -0600 Subject: [PATCH] update --- pages/Swap/Math401/Math401_N1.md | 67 ++++++++++++++++++++++++++++++++ pages/Swap/Math401/index.md | 5 +++ 2 files changed, 72 insertions(+) create mode 100644 pages/Swap/Math401/Math401_N1.md create mode 100644 pages/Swap/Math401/index.md diff --git a/pages/Swap/Math401/Math401_N1.md b/pages/Swap/Math401/Math401_N1.md new file mode 100644 index 0000000..b8e4e9a --- /dev/null +++ b/pages/Swap/Math401/Math401_N1.md @@ -0,0 +1,67 @@ +# Node 1 + +_all the materials are recovered after the end of the course. I cannot split my mind away from those materials._ + +## Recap on familiar ideas + +### Group + +A group is a set $G$ with a binary operation $\cdot$ that satisfies the following properties: + +1. **Closure**: For all $a, b \in G$, the result of the operation $a \cdot b$ is also in $G$. +2. **Associativity**: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. +3. **Identity**: There exists an element $e \in G$ such that for all $a \in G$, $e \cdot a = a \cdot e = a$. +4. **Inverses**: For each $a \in G$, there exists an element $b \in G$ such that $a \cdot b = b \cdot a = e$. + +### Ring + +A ring is a set $R$ with two binary operations, addition and multiplication, that satisfies the following properties: + +1. **Additive Closure**: For all $a, b \in R$, the result of the addition $a + b$ is also in $R$. +2. **Additive Associativity**: For all $a, b, c \in R$, $(a + b) + c = a + (b + c)$. +3. **Additive Identity**: There exists an element $0 \in R$ such that for all $a \in R$, $0 + a = a + 0 = a$. +4. **Additive Inverses**: For each $a \in R$, there exists an element $-a \in R$ such that $a + (-a) = (-a) + a = 0$. +5. **Multiplicative Closure**: For all $a, b \in R$, the result of the multiplication $a \cdot b$ is also in $R$. +6. **Multiplicative Associativity**: For all $a, b, c \in R$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. + +Others not shown since you don't need too much. + +## Symmetric Group + +### Definition + +The symmetric group $S_n$ is the group of all permutations of $n$ elements. Or in other words, the group of all bijections from a set of $n$ elements to itself. + +Example: + +$$ +e=1,2,3\\ +(12)=2,1,3\\ +(13)=3,2,1\\ +(23)=1,3,2\\ +(123)=3,1,2\\ +(132)=2,3,1 +$$ + +$(12)$ means that $1\to 2, 2\to 1, 3\to 3$ we follows the cyclic order for the elements in the set. + +$S_3 = \{e, (12), (13), (23), (123), (132)\}$ + +The multiplication table of $S_3$ is: + +|Element|e|(12)|(13)|(23)|(123)|(132)| +|---|---|---|---|---|---|---| +|e|e|(12)|(13)|(23)|(123)|(132)| +|(12)|(12)|e|(123)|(13)|(23)|(132)| +|(13)|(13)|(132)|e|(12)|(23)|(123)| +|(23)|(23)|(123)|(132)|e|(12)|(13)| +|(123)|(123)|(13)|(23)|(132)|e|(12)| +|(132)|(132)|(23)|(12)|(123)|(13)|e| + +## Functions defined on $S_n$ + +### Symmetric Generating Set + + + + diff --git a/pages/Swap/Math401/index.md b/pages/Swap/Math401/index.md new file mode 100644 index 0000000..ca787c0 --- /dev/null +++ b/pages/Swap/Math401/index.md @@ -0,0 +1,5 @@ +# Math 401 + +This is a course about symmetrical group and bunch of applications in other fields of math. + +Prof. Fere is teaching this course.