This commit is contained in:
Trance-0
2025-02-18 13:10:08 -06:00
parent 271424a25b
commit 2090e12d7f
3 changed files with 9922 additions and 9779 deletions

View File

@@ -5,15 +5,20 @@ const withNextra = nextra({
themeConfig: './theme.config.jsx', themeConfig: './theme.config.jsx',
latex: { latex: {
renderer: 'katex', renderer: 'katex',
// options: { options: {
// macros: { // suppress warnings from katex for `\\`
// '\\RR': '\\mathbb{R}' strict: false,
// } // macros: {
// } // '\\RR': '\\mathbb{R}'
// }
}
} }
}) })
export default withNextra({ export default withNextra({
eslint: {
ignoreDuringBuilds: true,
},
experimental: { experimental: {
// optimize memory usage: https://nextjs.org/docs/app/building-your-application/optimizing/memory-usage // optimize memory usage: https://nextjs.org/docs/app/building-your-application/optimizing/memory-usage
webpackMemoryOptimizations: true, webpackMemoryOptimizations: true,

19636
package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -109,7 +109,7 @@ Cauchy's theorem is true if $\gamma$ is a triangle.
Proof: Proof:
We plan to keep shrinking the triangle until $f(\zeta+h)=f(\zeta)+hf'(\zeta)+\mu(h)$ where $\mu(h)$ is a function of $h$ that goes to $0$ as $h\to 0$. We plan to keep shrinking the triangle until $f(\zeta+h)=f(\zeta)+hf'(\zeta)+\epsilon(h)$ where $\epsilon(h)$ is a function of $h$ that goes to $0$ as $h\to 0$.
Let's start with a triangle $T$ with vertices $z_1,z_2,z_3$. Let's start with a triangle $T$ with vertices $z_1,z_2,z_3$.
@@ -117,5 +117,53 @@ Let's start with a triangle $T$ with vertices $z_1,z_2,z_3$.
We divide $T$ into four smaller triangles by drawing lines from the midpoints of the sides to the opposite vertices. We divide $T$ into four smaller triangles by drawing lines from the midpoints of the sides to the opposite vertices.
Let $R_1,\ldots,R_4$ be the four smaller triangles.
For one $R_j$, $\left|\int_{R_j}f(z)dz\right|\geq\frac{1}{4}|I|$, we choose it then call it $T_1$.
There exists $T_1$ such that $\left|\int_{T_1}f(z)dz\right|\geq\frac{1}{4}|I|$.
Since $L(T_1)=\frac{1}{2}L(T)$, we iterate after $n$ steps, get a triangle $T_n$ such that $L(T_n)=\frac{L(T)}{2^n}$ and $\left|\int_{T_n}f(z)dz\right|\geq\frac{1}{4^n}|I|$.
Since $K_n=T_n\cup \text{interior}(T_n)$ is compact, we can find $K_n+1\subset K_n$ and $diam(K_n+1)<\frac{1}{2}diam(K_n)$. $diam(K_n)\to 0$ as $n\to\infty$. (Using completeness theorem)
Since $f$ is holomorphic on $u$, $\lim_{\zeta\to z_0}\frac{f(\zeta)-f(z_0)}{\zeta-z_0}=f'(z_0)$ exists.
So $f(\zeta)=f(z_0)+f'(z_0)(\zeta-z_0)+R(\zeta)$, we have
$$
\int_{T_n}f(\zeta)d\zeta=\int_{T_n}f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)d\zeta+\int_{T_n}R(\zeta)d\zeta
$$
since $f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)$ is in form of Cauchy integral formula, we have
$$
\int_{T_n}f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)d\zeta=0
$$
Let $e_n=\max\{\frac{R(\zeta)}{\zeta-z_0}:z_0\in T_n\}$
Since $diam(K_n)\to 0$ as $n\to\infty$, we have $e_n\to 0$ as $n\to\infty$.
So
$$
\begin{aligned}
|I|&\leq 4^n\left|\int_{T_n}f(\zeta)d\zeta\right|\\
&\leq 4^n\left|\int_{T_n}R_n(\zeta)d\zeta\right|\\
&\leq 4^n\cdot L(T_n)\cdot \max_{\zeta\in T_n}|R_n(\zeta)|\\
&\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n L(T_n)\\
&\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n\cdot \frac{L(T_0)}{2^n}\\
&\leq e_n\cdot L(T_0)^2
\end{aligned}
$$
Since $e_n\to 0$ as $n\to\infty$, we have $I\to 0$ as $n\to\infty$.
So
$$
\int_{T_n}f(\zeta)d\zeta\to 0
$$
EOP