update
This commit is contained in:
@@ -5,15 +5,20 @@ const withNextra = nextra({
|
||||
themeConfig: './theme.config.jsx',
|
||||
latex: {
|
||||
renderer: 'katex',
|
||||
// options: {
|
||||
// macros: {
|
||||
// '\\RR': '\\mathbb{R}'
|
||||
// }
|
||||
// }
|
||||
options: {
|
||||
// suppress warnings from katex for `\\`
|
||||
strict: false,
|
||||
// macros: {
|
||||
// '\\RR': '\\mathbb{R}'
|
||||
// }
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
export default withNextra({
|
||||
eslint: {
|
||||
ignoreDuringBuilds: true,
|
||||
},
|
||||
experimental: {
|
||||
// optimize memory usage: https://nextjs.org/docs/app/building-your-application/optimizing/memory-usage
|
||||
webpackMemoryOptimizations: true,
|
||||
|
||||
19636
package-lock.json
generated
19636
package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -109,7 +109,7 @@ Cauchy's theorem is true if $\gamma$ is a triangle.
|
||||
|
||||
Proof:
|
||||
|
||||
We plan to keep shrinking the triangle until $f(\zeta+h)=f(\zeta)+hf'(\zeta)+\mu(h)$ where $\mu(h)$ is a function of $h$ that goes to $0$ as $h\to 0$.
|
||||
We plan to keep shrinking the triangle until $f(\zeta+h)=f(\zeta)+hf'(\zeta)+\epsilon(h)$ where $\epsilon(h)$ is a function of $h$ that goes to $0$ as $h\to 0$.
|
||||
|
||||
Let's start with a triangle $T$ with vertices $z_1,z_2,z_3$.
|
||||
|
||||
@@ -117,5 +117,53 @@ Let's start with a triangle $T$ with vertices $z_1,z_2,z_3$.
|
||||
|
||||
We divide $T$ into four smaller triangles by drawing lines from the midpoints of the sides to the opposite vertices.
|
||||
|
||||
Let $R_1,\ldots,R_4$ be the four smaller triangles.
|
||||
|
||||
For one $R_j$, $\left|\int_{R_j}f(z)dz\right|\geq\frac{1}{4}|I|$, we choose it then call it $T_1$.
|
||||
|
||||
There exists $T_1$ such that $\left|\int_{T_1}f(z)dz\right|\geq\frac{1}{4}|I|$.
|
||||
|
||||
Since $L(T_1)=\frac{1}{2}L(T)$, we iterate after $n$ steps, get a triangle $T_n$ such that $L(T_n)=\frac{L(T)}{2^n}$ and $\left|\int_{T_n}f(z)dz\right|\geq\frac{1}{4^n}|I|$.
|
||||
|
||||
Since $K_n=T_n\cup \text{interior}(T_n)$ is compact, we can find $K_n+1\subset K_n$ and $diam(K_n+1)<\frac{1}{2}diam(K_n)$. $diam(K_n)\to 0$ as $n\to\infty$. (Using completeness theorem)
|
||||
|
||||
Since $f$ is holomorphic on $u$, $\lim_{\zeta\to z_0}\frac{f(\zeta)-f(z_0)}{\zeta-z_0}=f'(z_0)$ exists.
|
||||
|
||||
So $f(\zeta)=f(z_0)+f'(z_0)(\zeta-z_0)+R(\zeta)$, we have
|
||||
|
||||
$$
|
||||
\int_{T_n}f(\zeta)d\zeta=\int_{T_n}f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)d\zeta+\int_{T_n}R(\zeta)d\zeta
|
||||
$$
|
||||
|
||||
since $f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)$ is in form of Cauchy integral formula, we have
|
||||
|
||||
$$
|
||||
\int_{T_n}f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)d\zeta=0
|
||||
$$
|
||||
|
||||
Let $e_n=\max\{\frac{R(\zeta)}{\zeta-z_0}:z_0\in T_n\}$
|
||||
|
||||
Since $diam(K_n)\to 0$ as $n\to\infty$, we have $e_n\to 0$ as $n\to\infty$.
|
||||
|
||||
So
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
|I|&\leq 4^n\left|\int_{T_n}f(\zeta)d\zeta\right|\\
|
||||
&\leq 4^n\left|\int_{T_n}R_n(\zeta)d\zeta\right|\\
|
||||
&\leq 4^n\cdot L(T_n)\cdot \max_{\zeta\in T_n}|R_n(\zeta)|\\
|
||||
&\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n L(T_n)\\
|
||||
&\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n\cdot \frac{L(T_0)}{2^n}\\
|
||||
&\leq e_n\cdot L(T_0)^2
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Since $e_n\to 0$ as $n\to\infty$, we have $I\to 0$ as $n\to\infty$.
|
||||
|
||||
So
|
||||
|
||||
$$
|
||||
\int_{T_n}f(\zeta)d\zeta\to 0
|
||||
$$
|
||||
|
||||
EOP
|
||||
|
||||
Reference in New Issue
Block a user