From 2179fcb8e59215a4cca07d08dde2325c8cc77ca2 Mon Sep 17 00:00:00 2001 From: Trance-0 <60459821+Trance-0@users.noreply.github.com> Date: Sun, 20 Jul 2025 21:21:10 -0500 Subject: [PATCH] what just happened? --- content/Math401/Math401_P1_1.md | 4 +++- content/Math401/Math401_P1_3.md | 16 ++++++++++++++++ 2 files changed, 19 insertions(+), 1 deletion(-) diff --git a/content/Math401/Math401_P1_1.md b/content/Math401/Math401_P1_1.md index 40497d3..02971b5 100644 --- a/content/Math401/Math401_P1_1.md +++ b/content/Math401/Math401_P1_1.md @@ -145,8 +145,10 @@ QED ## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$ -A pure quantum state of size $N$ can be identified with a Hopf circle on the sphere $S^{2N-1}$. +A pure quantum state of size $N$ can be identified with a **Hopf circle** on the sphere $S^{2N-1}$. A random pure state $|\psi\rangle$ of a bipartite $N\times K$ system such that $K\geq N\geq 3$. The partial trace of such system produces a mixed state $\rho(\psi)=\operatorname{Tr}_K(|\psi\rangle\langle \psi|)$, with induced measure $\mu_K$. When $K=N$, the induced measure $\mu_K$ is the Hilbert-Schmidt measure. + +Consider the function $f:S^{2N-1}\to \mathbb{R}$ defined by $f(x)=S(\rho(\psi))$, where $S(\cdot)$ is the von Neumann entropy. The Lipschitz constant of $f$ is $\sim \ln N$. \ No newline at end of file diff --git a/content/Math401/Math401_P1_3.md b/content/Math401/Math401_P1_3.md index b6f4a41..a4b53e2 100644 --- a/content/Math401/Math401_P1_3.md +++ b/content/Math401/Math401_P1_3.md @@ -205,6 +205,22 @@ The goal is the same as the Gromov's version, first we bound the probability of Let $f:S^n\to \mathbb{R}$ be a 1-Lipschitz function. +Consider the two sets of points on the sphere $S^n$ with radius $\sqrt{n}$: + +$$ +\Omega_+=\{x\in S^n: f(x)\leq a_0-\epsilon\}, \Omega_-=\{x\in S^n: f(x)\geq a_0+\epsilon\} +$$ + +Note that $\Omega_+\cup \Omega_-$ is the whole sphere $S^n(\sqrt{n})$. + +By the Levy's isoperimetric inequality, we have + +$$ +\operatorname{vol}_{n-k}(\pi_{n,k}^{-1}(\epsilon))\leq \operatorname{vol}_{n-k}(\pi_{n,k}^{-1}(\Omega_+))+\operatorname{vol}_{n-k}(\pi_{n,k}^{-1}(\Omega_-)) +$$ + + + We define $\kappa_n(\epsilon)$ as the following: $$