diff --git a/content/Math4201/Math4201_L14.md b/content/Math4201/Math4201_L14.md new file mode 100644 index 0000000..19c1e35 --- /dev/null +++ b/content/Math4201/Math4201_L14.md @@ -0,0 +1,113 @@ +# Math4201 Topology I (Lecture 14) + +## Metric topology + +### Subspace topology and metric topology + +If $X$ and $Y$ are metrizable spaces, then the product space $X\times Y$ is metrizable. + +If $X$ is metrizable, then the subspace $A\subset X$ equipped with subspace topology is metrizable. + +
+Proof + +Let $d$ be a metric on $X$. Then define $d'$ be the restriction of $d$ to $A$: + +$$ +d':A\times A\to \mathbb{R}+ +$$ + +$$ +d'(x,y)=d(x,y) +$$ + +$x,y\in A\subseteq X$ + +$d'$ is a metric on $A$. Since the metric topology on $A$ associated to $d'$ is the same as the subspace topology. + +Note that for any $x\in A$ and $r>0$ + +$$ +B_r^{d}(x)\cap A=B_r^{d'}(x)\tag{*} +$$ + +A basis for metric topology on $A$ is given by: + +$$ +\mathcal{B}=\{B_r^{d'}(x)|x\in A,r>0,r\in \mathbb{R}\} +$$ + +A basis for the subspace topology on $A$ is given by: + +$$ +\mathcal{B}'=\{B_r^{d}(x)\cap A|x\in A,r>0,r\in \mathbb{R}\} +$$ + +Since (*) holds, $\mathcal{B}\subseteq \mathcal{B}'$. + +This shows that subspace topology on $A$ is finer than the metric topology on $A$. + +We need to show that for any $B_r^{d}(x)$ with $x\in X$ and $y\in B_r^{d}(x)\cap A$, we have $r'>0$ such that $y\in B_r^{d'}(y)\subseteq B_r^{d}(x)\cap A$. + +Use triangle inequality, we have $r'=r-d(x,y)>0$ such that $y\in B_r^{d'}(y)\subseteq B_r^{d}(x)\cap A$. + +
+ +#### Proposition on sequence and closure + +Let $X$ be a topological space and $A\subseteq X$. Then the following holds: + +If there is a sequence $\{x_n\}_{n=1}^\infty$ such that $x_n\in A$ and $x_n\to x$, then $x\in \overline{A}$. ($x$ may not be in $A$) + +The reverse holds if $X$ is a metric space. That is, if $X$ is a metric space and $x\in \overline{A}$, then there is a sequence $\{x_n\}_{n=1}^\infty$ such that $x_n\in A$ and $x_n\to x$. + +
+Example of non-metrizable space + +For the second part of the claim + +Let $X=\mathbb{R}\times \mathbb{R}\times \mathbb{R}\times \cdots$ with the product topology over infinite product. + +$X=\text{Map}(\mathbb{N},\mathbb{R})=\{(x_1,x_2,x_3,\cdots)|x_i\in \mathbb{R},i\in \mathbb{N}\}$. + +The box topology on $X$ is the topology generated by: + +$$ +\mathcal{B}=\{(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\times \cdots|a_i,b_i\in \mathbb{R},i\in \mathbb{N}\} +$$ + +It is easy to check that this is a basis. + +Take $A=\mathbb{R}^{> 0}\times \mathbb{R}^{> 0}\times \mathbb{R}^{> 0}\times \cdots=\{(x_1,x_2,x_3,\cdots)|x_i> 0\}$. + +$\overline{A}=\mathbb{R}^{\geq 0}\times \mathbb{R}^{\geq 0}\times \mathbb{R}^{\geq 0}\times \cdots=\{(x_1,x_2,x_3,\cdots)|x_i\geq 0\}$. + +In particular, $(0,0,0,\cdots)\in \overline{A}$ + +Take a basis element $B=(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\times \cdots\in \mathcal{B}$ containing $(0,0,0,\cdots)$. This means that $a_i<00$ for all $i\in \mathbb{N}$. + +Consider the following open set around $(0,0,0,\cdots)$: + +$C=(-\frac{a_1^1}{2},\frac{a_1^1}{2})\times (-\frac{a_2^1}{2},\frac{a_2^1}{2})\times (-\frac{a_3^1}{2},\frac{a_3^1}{2})\times \cdots$ + +We claim that $v_n\notin C$. Otherwise, we should have $-\frac{a_i^j}{2} \ No newline at end of file diff --git a/content/Math4201/_meta.js b/content/Math4201/_meta.js index d236f84..3244976 100644 --- a/content/Math4201/_meta.js +++ b/content/Math4201/_meta.js @@ -16,4 +16,5 @@ export default { Math4201_L11: "Topology I (Lecture 11)", Math4201_L12: "Topology I (Lecture 12)", Math4201_L13: "Topology I (Lecture 13)", + Math4201_L14: "Topology I (Lecture 14)", }