diff --git a/content/CSE5313/CSE5313_L9.md b/content/CSE5313/CSE5313_L9.md
new file mode 100644
index 0000000..354e67b
--- /dev/null
+++ b/content/CSE5313/CSE5313_L9.md
@@ -0,0 +1,278 @@
+# CSE5313 Coding and information theory for data science (Lecture 9)
+
+## Explicit optimal codes
+
+Explicit optimal codes?
+
+- Singleton, Sphere-packing provide restrictions.
+- Gilbert-Varshamov provides existence.
+
+Are there explicit optimal codes? That is,
+
+- Easily (polynomial time) encodable, decodable.
+
+Yes! This lecture:
+
+– Gustave Solomon [1930-1996] (Reed-Solomon code)
+– Irving S. Reed [1923-2012].
+– David E. Muller [1924-2008] (Reed-Muller code)
+
+Using Polynomials over $\mathbb{F}_q$
+
+## Reed-Solomon code
+
+> [!NOTE]
+>
+> The fundamental theorem of algebra:
+>
+> A polynomial of degree $k$ has at most $k$ roots.
+
+We have two equivalent definitions of a Reed-Solomon code:
+
+- As polynomial evaluations.
+- As linear codes (from generator matrix)
+
+Efficient encoding (as linear codes)
+
+Efficient decoding (use Euclidean algorithm)
+
+### Definition of Reed-Solomon code from polynomial evaluations
+
+> [!DANGER]
+>
+> We assume $q\geq n$.
+
+Every codeword corresponds to a polynomial of degree at most $k-1$.
+
+Let $f(x)=\sum_{i=0}^{k-1}f_ix^i\in \mathbb{F}_q^{k-1}[x]$ ($f_i\in \mathbb{F}_q$ for all $i$, $\deg(f)\leq k-1$).
+
+Fix **distinct** $a_1,a_2,\ldots,a_n\in \mathbb{F}_q$.
+
+#### Definition of Reed-Solomon code
+
+A Reed-Solomon code is $\{f(a_1),f(a_2),\ldots,f(a_n)|f(x)\in \mathbb{F}_q^{k-1}[x]\}$.
+
+- In words, the set of all evaluations at $a_1,a_2,\ldots,a_n$ of polynomials of degree at most $k-1$.
+
+
+Example of Reed-Solomon code
+
+Let $n=5$, $\mathbb{F}_q=\mathbb{Z}_5$, $k=3$.
+
+||$a_0=0$|$a_1=1$|$a_2=2$|$a_3=3$|$a_4=4$|
+|---|---|---|---|---|---|
+|$f(x)=1$|$1$|$1$|$1$|$1$|$1$|
+|$f(x)=x+2$|$2$|$3$|$4$|$0$|$1$|
+|$f(x)=x^2+x$|$0$|$2$|$1$|$2$|$0$|
+
+Here $d=n-k+1=3$.
+
+
+
+#### Proposition: Reed-Solomon code is a linear code
+
+A Reed-Solomon code is $\{f(a_1),f(a_2),\ldots,f(a_n)|f(x)\in \mathbb{F}_q^{k-1}[x]\}$ is a linear code.
+
+
+Proof
+
+First the code is closed under addition.
+
+Let $f(x),g(x)\in \mathbb{F}_q^{k-1}[x]$, then $f(x)+g(x)\in \mathbb{F}_q^{k-1}[x]$.
+
+$$
+f(x)+g(x)=\sum_{i=0}^{k-1}(f_i+g_i)x^i
+$$
+
+Then the code is closed under scalar multiplication.
+
+Let $f(x)\in \mathbb{F}_q^{k-1}[x]$, $c\in \mathbb{F}_q$, then $cf(x)\in \mathbb{F}_q^{k-1}[x]$.
+
+$$
+cf(x)=\sum_{i=0}^{k-1}(cf_i)x^i
+$$
+
+
+
+The dimension of the code is $k$.
+
+#### Corollary: The Reed-Solomon code attains the Singleton bound with equality
+
+The Reed-Solomon code has minimum distance $n-k+1$.
+
+
+Proof
+
+Let $c_f=(f(a_1),f(a_2),\ldots,f(a_n))$ and $c_g=(g(a_1),g(a_2),\ldots,g(a_n))$.
+
+Since $f\neq g$, and $d(c_f,c_g)$ is the minimum distance of the code
+
+Let $c_{f-g}=(f(a_1)-g(a_1),f(a_2)-g(a_2),\ldots,f(a_n)-g(a_n))$.
+
+By the lemma for minimum distance, we have $d(c_f,c_g)=w_H(c_{f-g})=w_H((f-g)(a_1),(f-g)(a_2),\ldots,(f-g)(a_n))$ where $f-g\in \mathbb{F}_q^{k-1}[x]$.
+
+So $n-w_H(c_{f-g})$ is the number of zeros (root) of the polynomial $f-g$.
+
+So if $f-g$ has more than $k-1$ roots, then $f=g$.
+
+So $n-d\leq k-1$, $d\geq n-k+1$.
+
+Which is the Singleton bound.
+
+
+
+### Definition of Reed-Solomon code from generator matrix
+
+Every Reed-Solomon code is of the form $(f(a_1),f(a_2),\ldots,f(a_n))$ for some $f(x)=\sum_{i=0}^{k-1}f_ix^i\in \mathbb{F}_q^{k-1}[x]$.
+
+Observer that the evaluation map is a linear map.
+
+$f(a_1)=f_0+f_1a_1+f_2a_1^2+\cdots+f_{k-1}a_1^{k-1}$
+$f(a_2)=f_0+f_1a_2+f_2a_2^2+\cdots+f_{k-1}a_2^{k-1}$
+$\vdots$
+$f(a_n)=f_0+f_1a_n+f_2a_n^2+\cdots+f_{k-1}a_n^{k-1}$
+
+So, every code word can be constructed by
+
+$$
+(f(a_1),f(a_2),\ldots,f(a_n))=(f_0,f_1,f_2,\ldots,f_{k-1})\begin{pmatrix}
+1 & 1 & \cdots & 1\\
+a_1 & a_2 & \cdots & a_n\\
+a_1^2 & a_2^2 & \cdots & a_n^2\\
+\vdots & \vdots & \cdots & \vdots\\
+a_1^{k-1} & a_2^{k-1} & \cdots & a_n^{k-1}
+\end{pmatrix}
+$$
+
+The generator matrix for Reed-Solomon code is a Vandermonde matrix $V(a_1,a_2,\ldots,a_n)$.
+
+Fact: $V(a_1,a_2,\ldots,a_n)$ is invertible if and only if $a_1,a_2,\ldots,a_n$ are distinct. (that's how we choose $a_1,a_2,\ldots,a_n$)
+
+The parity check matrix for Reed-Solomon code is also a Vandermonde matrix $V(a_1,a_2,\ldots,a_n)^T$ with scalar multiples of the columns.
+
+Some technical lemmas:
+
+Let $G$ and $H$ be the generator and parity-check matrices of (any) linear code
+$C = [n, k, d]_{\mathbb{F}_q}$. Then:
+
+I. Then $H G^T = 0$.
+II. Any matrix $M \in \mathbb{F}_q^{n-k \times k}$ such that $\rank(M) = n - k$ and $M G^T = 0$ is a parity-check matrix for $C$ (i.e. $C = \ker M$).
+
+## Reed-Muller code
+
+Reed-Solomon codes: Evaluations of univariate polynomials of deg ≤ $k-1$.
+
+Reed-Muller codes: Evaluations of multivariate polynomials of deg $\leq k-1$
+
+Example:
+
+$$
+f(x_1,x_2,x_3)=x_1x_2^2+x_1x_3+x_2+x_2x_3^3
+$$
+
+This is a degree 4 polynomial.
+
+Usually we use $q=2$ for binary codes.
+
+So $x^2=x$
+
+### Definition of Reed-Muller code (binary case)
+
+$$
+RM(r,m)=\left\{(f(\alpha_1),\ldots,f(\alpha_2^m))|\alpha_i\in \mathbb{F}_2^m,\deg f\leq r\right\}
+$$
+
+Facts:
+
+- Length $n = 2^m$.
+- Minimum distance $2^{m-r}$ (not shown).
+- Dimension = # of free coefficients in a multilinear polynomial of degree at most $r$.
+- Dimension = # of subsets of $\{1, 2, \ldots, m\}$ of size at most $r$
+- Dimension = $\sum_{i=0}^{r}\binom{m}{i}$
+
+Exercises: Show that
+
+1. $C_1 = RM(m-1,m) =$ Parity code.
+2. $C_2 = RM(m-2,m) =$ Extended Hamming code.
+3. $C_3 = RM(1,m) =$ Augmented Hadamard.
+
+## Coding for storage
+
+### Requirements/Challenges in Storage Systems
+
+1. Challenge 1: Reconstruction.
+ - The data collector must be able to reconstruct the file, even if some are nonresponsive.
+ - Minimize **reconstruction** bandwidth.
+2. Challenge 2: Repair.
+ - The system must maintain data consistency.
+ - Failed servers must be repaired:
+ - By contacting few other servers (locality, due to geographical constraints).
+ - By minimizing bandwidth.
+3. Challenge 3: Storage overhead.
+ - Minimize space consumption.
+ - Minimize redundancy.
+
+### Naive solution: Replication
+
+Fragment the file $X = (X_1, \ldots, X_k)$.
+
+- Size of $X_i$ = Whatever fits in a storage server.
+
+Hold $r$ copies of each $X_i$.
+
+- I.e., $n = rk$ servers in the system.
+
+Storage overhead?
+
+- $\frac{n}{k} = r$.
+
+Repair?
+
+- $X_i$ fails
+- $\geq r$ failures is lost data.
+
+Reconstruction?
+
+- Possible if any $r-1$ servers fail.
+- Impossible for some $\geq r$ failures.
+
+### Use codes to improve storage efficiency
+
+Reconstruction?
+
+- Lecture 1: If $d_H(\mathcal{C})\geq d$, every pattern of at most $d-1$ erasures is recoverable.
+
+- Idea: Treat unavailable servers as erasures.
+
+Is this better/worse than replication?
+
+- Say we wish to reconstruct from any $\approx \frac{n}{10}$ servers.
+- What would be the redundancy in replication vs. coding?
+
+Coding:
+
+- Can reconstruct file from any $n-d+1\approx \frac{9}{10}n$ servers.
+- Resulting overhead $\frac{n}{k}=\frac{n}{n-d+1}\approx \frac{10}{9}$ (constant!).
+
+Replication:
+
+To reconstruct from any $\frac{9}{10}n$ servers, need $r-1\approx \frac{1}{10}n$
+
+Repair?
+
+- Need low locality (repair by contacting few other servers).
+- Need low bandwidth (repair by downloading as few bits as possible).
+
+Repair in a replicated system:
+
+- $X_i$ fails $\Rightarrow$ reconstruct from a different copy.
+- Locality 1.
+- Optimal bandwidth.
+
+Repair in a coded system:
+
+- repair one $Y_i$ $\approx$ Reconstruct the entire file.
+ - Locality $n-d+1$, high bandwidth.
+- Much worse than replication.
+
+New coding challenges: Minimize locality and bandwidth
diff --git a/content/CSE5313/_meta.js b/content/CSE5313/_meta.js
index 2068cc7..35560ed 100644
--- a/content/CSE5313/_meta.js
+++ b/content/CSE5313/_meta.js
@@ -10,4 +10,6 @@ export default {
CSE5313_L5: "CSE5313 Coding and information theory for data science (Lecture 5)",
CSE5313_L6: "CSE5313 Coding and information theory for data science (Lecture 6)",
CSE5313_L7: "CSE5313 Coding and information theory for data science (Lecture 7)",
+ CSE5313_L8: "CSE5313 Coding and information theory for data science (Lecture 8)",
+ CSE5313_L9: "CSE5313 Coding and information theory for data science (Lecture 9)",
}
\ No newline at end of file