diff --git a/pages/Swap/Math401/Math401_N3.md b/pages/Swap/Math401/Math401_N3.md new file mode 100644 index 0000000..6739176 --- /dev/null +++ b/pages/Swap/Math401/Math401_N3.md @@ -0,0 +1,62 @@ +# Coding and Information Theory Crash Course + +## Encoding + +Let $A,B$ be two finite sets with size $a,b$ respectively. + +Let $S(A)=\bigcup_{r=1}^{\infty}A^r$ be the word semigroup generated by $A$. + +A one-to-one mapping $f:A\to S(B)$ is called a code with message alphabet $A$ and encoded alphabet $B$. + +Example: + +- $A=$ RGB color space +- $B=\{0\sim 255\}$ +- $f:A\to B^n$ is a code + +For example, $f(white)=(255,255,255)$, $f(green)=(0,255,0)$ + +### Uniquely decipherable codes + +A code $f:A\to S(B)$ is called uniquely decipherable if the extension code + +$$ +\tilde{f}:S(A)\to S(B)=f(a_1)f(a_2)\cdots f(a_n) +$$ + +is one-to-one. + +Example: + +- $A=\{a,b,c,d\}$ +- $B=\{0,1\}$ +- $f(a)=00$, $f(b)=01$, $f(c)=10$, $f(d)=11$ + +is uniquely decipherable. + +- $f(a)=0$, $f(b)=1$, $f(c)=10$, $f(d)=11$ + +is not uniquely decipherable. + +Since $\tilde{f}(ba)=10=\tilde{f}(c)$ + +#### Irreducible codes + +A code $f:A\to S(B)$ is called irreducible if for any $x,y\in A$, $f(y)\neq f(x)w$ for some $w\in S(B)$. + + + + + + + + + + + + + + + + +