update notations and fix typos
This commit is contained in:
@@ -154,7 +154,7 @@ This is a valid assignment since:
|
||||
- We pick either $v_i$ or $\overline{v_i}$
|
||||
- For each clause, at least one literal is true
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Claim 2: If $\Psi$ is satisfiable, then Subset Sum has a solution.
|
||||
|
||||
@@ -174,7 +174,7 @@ Say $t=\sum$ elements we picked from $S$.
|
||||
- If $q_j=2$, then $z_j\in S'$
|
||||
- If $q_j=3$, then $y_j\in S'$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Example 2: 3 Color
|
||||
|
||||
@@ -228,13 +228,13 @@ For each dangler color is connected to blue, all literals cannot be blue.
|
||||
|
||||
...
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Direction 2: If $G$ is 3-colorable, then $\Psi$ is satisfiable.
|
||||
|
||||
Proof:
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Example 3:Hamiltonian cycle problem (HAMCYCLE)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user