update notations and fix typos
This commit is contained in:
@@ -22,7 +22,7 @@ Suppose $S$ and $T$ are compact, let $\{G_\alpha\}_{\alpha\in A}$ be an open cov
|
||||
|
||||
...
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
## K-cells are compact
|
||||
|
||||
@@ -63,7 +63,7 @@ Let $n\in \mathbb{N}$ be such that $\frac{1}{2^n}<r$. Then by $(c)$, $I(n)\subse
|
||||
|
||||
Then $\{G_{\alpha_0}\}$ is a cover of $I_n$ which contradicts with (b)
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
## Redundant subcover question
|
||||
|
||||
|
||||
@@ -36,7 +36,7 @@ So $m^2$ is divisible by 4, $2n^2$ is divisible by 4.
|
||||
|
||||
So $n^2$ is even. but they are not both even.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Theorem (No closest rational for a irrational number)
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ $\impliedby$ Suppose $K$ is compact relative to $Y$. Let $\{G_\alpha\}_{\alpha\i
|
||||
|
||||
Since $k$ is compact relative to $Y$, $\{G_\alpha\cap Y\}_\alpha$ has a finite subcover $\{G_{\alpha_i}\cap Y\}_{i=1}^n$. Then $\{G_{\alpha_i}\}_{i=1}^n$ is a finite subcover of $\{G_\alpha\}_{\alpha}$ of $K$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 2.24
|
||||
|
||||
|
||||
@@ -31,7 +31,7 @@ And $(\bigcup_{\alpha\in A} G_\alpha)\cup F^c=X\supset K$ is an open cover of $K
|
||||
|
||||
Since $F\subset K$, So $\Phi$ is a cover of $F$ then $\Phi\backslash \{F^c\}$ is a finite subcover of $\{G_\alpha\}_{\alpha \in A}$ of $F$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
##### Corollary 2.35
|
||||
|
||||
@@ -57,7 +57,7 @@ Let $l=\max\{n_1,...,n_m\}$, then $K_l=\bigcap^{m}_{i=i} K_{n_i}$. So $K_1\subse
|
||||
|
||||
which contradicts with $K_l\subset K_1$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 2.37
|
||||
|
||||
@@ -75,7 +75,7 @@ For each $q\in K, q\notin E'$, so $\exists$ neighborhood $\forall q\in B_{r_q}(q
|
||||
|
||||
Then $\{V_q\}_{q\in K}$ is an open cover of $K$ , so it has a finite subcover $\{V_{q_i}\}^n_{n=1}$. Then $E\subset K\subset \bigcup_{i=1}^n$, and $\forall i,V_{q_i}\cap E\subset \{q_i\}$, then $E\subset\{q_1,...,q_n\}$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 2.38
|
||||
|
||||
@@ -101,4 +101,4 @@ Since $x$ is an upper bound of $E$ and $a_n\in E$, then $a_n\leq x$.
|
||||
|
||||
Since $x$ is the least upper bound of $E$, and $b_n$ is an upper bound of $E$, then $x\leq b_n$. $x\in E,E\neq \phi$
|
||||
|
||||
EOP
|
||||
QED
|
||||
@@ -20,7 +20,7 @@ Proof:
|
||||
|
||||
Fix $p\in X$, then $\{B_n(p)\}_{n\in \mathbb{N}}$ (specific open cover) is an open cover of $S$ (Since $\bigcup_{n\in \mathbb{N}}=X$). Since $S$ is compact, then $\exists$ a finite subcover ${n\in \mathbb{N}}_{i=1}^k=S$, let $r=max(n_1,...n_k)$, Then $S\subset B_r(p)$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Definition k-cell
|
||||
|
||||
@@ -74,7 +74,7 @@ Let $n\in \mathbb{N}$ be such that $\frac{1}{2^n}<r$. Then by $(c)$, $I(n)\subse
|
||||
|
||||
Then $\{G_{\alpha_0}\}$ is a cover of $I_n$ which contradicts with (b)
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 2.41
|
||||
|
||||
@@ -131,4 +131,4 @@ $$
|
||||
|
||||
So $B_r(y)\cap S$ is finite. By **Theorem 2.20**, $y\notin S$, this proves the claim so $S'\cap E=\phi$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
@@ -90,7 +90,7 @@ Thus, $\exists r>0$ such that $(w-r,w+r)\cap B=\phi$.
|
||||
|
||||
Let $z=w+\frac{r}{2}$, then $x,y,z$ satisfy the desired properties.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
## Chapter 3: Numerical Sequences and Series
|
||||
|
||||
@@ -140,4 +140,4 @@ Let $n\geq N$ (arbitrary)
|
||||
|
||||
Then $|s_n-q|=\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$
|
||||
|
||||
EOP
|
||||
QED
|
||||
@@ -74,7 +74,7 @@ And $\forall \epsilon>0,d(p,p')<2\epsilon\implies d(p,p')=0$. So $p=p'$
|
||||
|
||||
Let $\epsilon>0$. Choose $N\in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$. Then if $n\geq N$, $d(p_n,p)<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.3
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@ $$
|
||||
Proof:
|
||||
Let $\epsilon>0$ be arbitrary, then $\exists N$ such that $\forall n\geq N,|a_n-a|<\epsilon$.
|
||||
Then if $n\geq N$, $|a_n-a|\leq \sqrt{|a_n-a|^2}\leq\sqrt{|a_n-a|^2+|b_n-b|^2}=|x_n-(a,b)|<\epsilon$.
|
||||
EOP
|
||||
QED
|
||||
(b) If $x_n\to (a,b)$, then $b_n\to b$.
|
||||
This follows from the same argument from (a)
|
||||
2. Prove the $\implies$ direction.
|
||||
@@ -28,7 +28,7 @@ $$
|
||||
Since $a_n\to a$, $\exists N_1$ such that $\forall n\geq N_1,|a_n-a|<\frac{\epsilon}{\sqrt{2}}$.
|
||||
Since $b_n\to b$, $\exists N_2$ such that $\forall n\geq N_2,|b_n-b|<\frac{\epsilon}{\sqrt{2}}$.
|
||||
Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$, $|a_n-a|<\epsilon$ and $|b_n-b|<\sqrt{\frac{\epsilon^2}{2}+\frac{\epsilon^2}{2}}=\epsilon$.
|
||||
EOP
|
||||
QED
|
||||
|
||||
## New Materials
|
||||
|
||||
@@ -82,7 +82,7 @@ $$
|
||||
\left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s-s_n|}{|s||s_n|}<\frac{\frac{\epsilon|s|^2}{2}}{|s|^2}=\epsilon
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Subsequences
|
||||
|
||||
@@ -108,7 +108,7 @@ $\implies$:
|
||||
|
||||
Thought process: show what if the sequence does not converge to $p$, then there exists a subsequence that does not converge to $p$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.6
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ Let $n\geq N$. Since $(s_n)$ is monotonic increasing, $s_n\geq s_N>t-\epsilon$.
|
||||
|
||||
So $(s_n)$ converges to $t$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
## New materials
|
||||
|
||||
@@ -47,7 +47,7 @@ Step 3: By induction, we can get a sequence $n_1,n_2,\cdots$ such that $\forall
|
||||
|
||||
Then $(p_{n_i})$ is a subsequence of $(p_n)$ and $p_{n_i}\to q$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Cauchy Sequences
|
||||
|
||||
@@ -93,7 +93,7 @@ If $m,n\geq N$, then $d(p_m,p_n)\leq d(p_m,p)+d(p,p_n)<\epsilon+\epsilon=2\epsil
|
||||
|
||||
*You can also use $\frac{\epsilon}{2}$ instead of $\epsilon$ in the above proof, just for fun.*
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Lemma 3.11 (b)
|
||||
|
||||
@@ -107,7 +107,7 @@ Let $r=max\{d(p_i,p_j);1\leq i,j\leq N\}+1$.
|
||||
|
||||
Then $\forall n\in \mathbb{N}$, $p_n\in B_r(p_N)$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
> Note: This proof is nearly identical to the proof of convergent sequences implies bounded.
|
||||
|
||||
@@ -148,5 +148,5 @@ By definition of supremum, the claim implies that $\forall \epsilon>0$, $diam(\o
|
||||
|
||||
(b) By **Theorem 2.36**, $\bigcap_{n=1}^{\infty}K_n\neq \phi$. Suppose for contradiction that there are at least two distinct points $p,q\in \bigcap_{n=1}^{\infty}K_n$. Then for all $n\in \mathbb{N}$, $x,y\in K_n$ so $diam K_n\geq d(p,q)>0$. Then diameter of $K_n$ does not converge to 0.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
|
||||
@@ -44,7 +44,7 @@ Note that **Theorem 2.41** only works for $\mathbb{R}^k$.
|
||||
|
||||
So by (b), $(p_n)$ converges to some $p\in \overline{B(0,R)}$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Definition 3.12
|
||||
|
||||
@@ -89,7 +89,7 @@ If $(s_n)$ is monotonic and bounded, then by previous result, $(s_n)$ converges.
|
||||
|
||||
If $(s_n)$ is monotonic and converges, then by **Theorem 3.2(c)**, $(s_n)$ is bounded.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Upper and lower limits
|
||||
|
||||
|
||||
@@ -79,7 +79,7 @@ Case 2: $(s_n)$ is bounded above.
|
||||
|
||||
Let $M$ be an upper bound for $(s_n)$. Then $\{n\in\mathbb{N}:s_n\in[M,x]\}$ is infinite, by **Theorem 3.6 (b)** ($\exists$ subsequence $(s_{n_k})$ in $[x,M)$ and $\exists t\in[x,M]$ such that $s_{n_k}\to t$. This implies $t\in E$, so $x\leq t\leq S^*$).
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.19 ("one-sided squeeze theorem")
|
||||
|
||||
@@ -104,7 +104,7 @@ By **Theorem 3.17**, $\{n\in\mathbb{N}:t_n\geq x\}$ is finite $\implies$ $\{n\in
|
||||
|
||||
Thus $\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
> Normal squeeze theorem: If $s_n\leq t_n\leq u_n$ for all $n\in\mathbb{N}$, and $\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L$, then $\lim_{n\to\infty} t_n=L$.
|
||||
>
|
||||
|
||||
@@ -15,14 +15,14 @@
|
||||
&\geq\binom{n}{4}
|
||||
\end{aligned}
|
||||
$$
|
||||
EOP
|
||||
QED
|
||||
2. Using part 1, show that $\lim_{n\to\infty}\frac{n^3}{2^n}=0$.
|
||||
Proof:
|
||||
$$
|
||||
\frac{n^3}{2^n}\leq\frac{n^3}{\binom{n}{4}}
|
||||
$$
|
||||
The value of $\frac{n^3}{\binom{n}{4}}$ is decreasing when $n\geq 4$.
|
||||
EOP
|
||||
QED
|
||||
|
||||
## New materials
|
||||
|
||||
@@ -53,7 +53,7 @@ $$
|
||||
|s_m-s_n|=\left|\sum_{k=n}^{m}a_k\right|<\epsilon.
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Special case of this theorem.
|
||||
|
||||
@@ -94,7 +94,7 @@ $$
|
||||
\left|\sum_{k=n}^{m}c_k\right|\leq \sum_{k=n}^{m}c_k<\epsilon.
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.26 (Geometric series)
|
||||
|
||||
@@ -115,7 +115,7 @@ So $s_n=\frac{1-x^{n+1}}{1-x}$.
|
||||
|
||||
Since $|x|<1$, $x^{n+1}$ converges to 0. So $\lim_{n\to\infty}s_n=\frac{1}{1-x}$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Lemma 3.28
|
||||
|
||||
@@ -149,7 +149,7 @@ $$
|
||||
|
||||
> Fun fact: $\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.27 (Cauchy condensation test)
|
||||
|
||||
@@ -191,4 +191,4 @@ So $(s_n)_{n=1}^{\infty}$ is a bounded above.
|
||||
|
||||
By **Theorem 3.14**, $(s_n)_{n=1}^{\infty}$ converges if and only if $(t_k)_{k=0}^{\infty}$ converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
@@ -59,7 +59,7 @@ Suppose for contradiction $\alpha$ and $\beta$ are both LUB of $E$, then $\alpha
|
||||
|
||||
WLOG $\alpha>\beta$ and $\beta>\alpha$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
We write $\sup E$ to denote the LUB of $E$.
|
||||
|
||||
|
||||
@@ -114,7 +114,7 @@ Therefore, $e\leq \liminf_{n\to\infty} t_n\leq \limsup_{n\to\infty} t_n\leq e$.
|
||||
|
||||
So $\lim_{n\to\infty} t_n$ exists and $\lim_{n\to\infty} t_n = e$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.32
|
||||
|
||||
@@ -156,7 +156,7 @@ $$
|
||||
|
||||
Contradiction.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### The root and ratio tests
|
||||
|
||||
@@ -190,7 +190,7 @@ Thus $a_n\not\to 0$, $\sum_{n=0}^{\infty} a_n$ diverges.
|
||||
|
||||
(c) $\sum_{n=0}^{\infty} \frac{1}{n}$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ both have $\alpha = 1$. but the first diverges and the second converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.34 (Ratio test)
|
||||
|
||||
@@ -232,7 +232,7 @@ i.e. $\forall n\geq N, |a_n| < \beta^{n-N}|a_N|=\beta^n(\beta^{-N}|a_N|)$.
|
||||
|
||||
Since $\sum_{n=N}^{\infty} \beta^n$ converges, by comparison test, $\sum_{n=0}^{\infty} a_n$ converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
We will skip **Theorem 3.37**. One implication is that if ratio test can be applied, then root test can be applied.
|
||||
|
||||
@@ -267,4 +267,4 @@ $$
|
||||
|
||||
By root test, the series converges absolutely for all $z\in\mathbb{C}$ with $|z| < R$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
@@ -56,7 +56,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.42 (Dirichlet's test)
|
||||
|
||||
@@ -101,7 +101,7 @@ $$
|
||||
|
||||
So $\sum a_nb_n$ converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.43 (Alternating series test)
|
||||
|
||||
@@ -122,7 +122,7 @@ So $|A_n|\leq 1$ for all $n\in \mathbb{N}$.
|
||||
|
||||
By Theorem 3.42, $\sum_{n=1}^\infty a_n b_n$ converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Example:
|
||||
|
||||
@@ -161,7 +161,7 @@ So $|A_n|\leq \frac{2}{|1-z|}$ for all $n\in \mathbb{N}$.
|
||||
|
||||
By Dirichlet's test, $\sum_{n=0}^\infty b_nz^n$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Absolute convergence
|
||||
|
||||
@@ -183,7 +183,7 @@ $$
|
||||
\sum_{n=0}^\infty |a_n|\geq \sum_{n=0}^\infty a_n
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Rearrangement of series:
|
||||
|
||||
@@ -257,4 +257,4 @@ For every $n\in \mathbb{N}$, there exists a $p$ such that $\{1,2,\cdots,n\}\subs
|
||||
|
||||
Then $|s_n-t_n|\leq \sum_{k=N+1}^\infty |a_k|$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
@@ -77,7 +77,7 @@ This proves that $\lim_{n\to\infty} |s_n - t_n| = 0$.
|
||||
|
||||
Since $\lim_{n\to\infty} s_n$ exists, $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.54
|
||||
|
||||
@@ -137,7 +137,7 @@ Then: $(p_n)$ is a sequence in $E\backslash\{p\}$ with $d_X(p_n,p) = \frac{1}{n}
|
||||
|
||||
So $\lim_{n\to\infty} f(p_n) \neq q$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
With this theorem, we can use the properties of limit of sequences to study limits of functions.
|
||||
|
||||
|
||||
@@ -33,7 +33,7 @@ $\impliedby$: Suppose for every open set $V\subset Y$, $f^{-1}(V)$ is open in $X
|
||||
|
||||
Since $p\in f^{-1}(B_\epsilon(f(p)))$ and $f^{-1}(B_\epsilon(f(p)))$ is open, $\exists \delta > 0$ such that $B_\delta(p)\subset f^{-1}(B_\epsilon(f(p)))$. Therefore, $f(B_\delta(p))\subset B_\epsilon(f(p))$. This shows that $f$ is continuous.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Corollary 4.8
|
||||
|
||||
@@ -82,7 +82,7 @@ Proof:
|
||||
|
||||
Let $p\in \mathbb{R}$ and $\epsilon > 0$. Let $\delta = \epsilon$. Then, $\forall x\in \mathbb{R}$, if $|x-p|<\delta$, then $|f(x)-f(p)| = |x-p| < \delta = \epsilon$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Therefore, by **Theorem 4.9**, $f(x) = x^2$ is continuous. $f(x) = x^3$ is continuous... So all polynomials are continuous.
|
||||
|
||||
@@ -131,7 +131,7 @@ By Theorem 2.41, $f(X)$ is closed and bounded.
|
||||
|
||||
By Theorem 2.28, $\sup f(X)$ and $\inf f(X)$ exist and are in $f(X)$. Let $p_0\in X$ such that $f(p_0) = \sup f(X)$. Let $q_0\in X$ such that $f(q_0) = \inf f(X)$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
---
|
||||
|
||||
@@ -151,7 +151,7 @@ Proof:
|
||||
|
||||
See the textbook.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
---
|
||||
|
||||
@@ -191,7 +191,7 @@ Since $A$ and $B$ are separated, $\overline{A}\cap B = \phi$ and $\overline{B}\c
|
||||
|
||||
Therefore, $\overline{G}\cap H = \phi$ and $\overline{H}\cap G = \phi$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 4.23 (Intermediate Value Theorem)
|
||||
|
||||
@@ -207,4 +207,4 @@ $f(a)$ and $f(b)$ are real numbers in $f([a,b])$, and $c$ is a real number betwe
|
||||
|
||||
By **Theorem 2.47**, $c\in f([a,b])$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
@@ -99,7 +99,7 @@ _The $\epsilon$ bound would not hold if we only had pointwise convergence._
|
||||
|
||||
$|f_N(x) - f_N(p)| < 3\epsilon$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
> Recall: If $(s_n)$ is a sequence in $\mathbb{R}$, then $(s_n)$ converges to $s$ if and only if it is Cauchy.
|
||||
> i.e. $\forall \epsilon > 0$, $\exists N\in \mathbb{N}$, $\forall n, m\geq N$, $|s_n - s_m| < \epsilon$.
|
||||
@@ -147,7 +147,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Example:
|
||||
|
||||
|
||||
@@ -22,10 +22,12 @@ Let $S=\mathbb{Z}$.
|
||||
|
||||
## Continue
|
||||
|
||||
### LUBP
|
||||
### LUBP (The least upper bound property)
|
||||
|
||||
Proof that $LUBP\implies GLBP$.
|
||||
|
||||
Proof:
|
||||
|
||||
Let $S$ be an ordered set with LUBP. Let $B<S$ be non-empty and bounded below.
|
||||
|
||||
Let $L=y\in S:y$ is a lower bound of $B$. From the picture, we expect $\sup L=\inf B$ First we'll show $\sup L$ exists.
|
||||
@@ -55,6 +57,8 @@ Let's say $\alpha=sup\ L$. We claim that $\alpha=inf\ B$. We need to show $2$ th
|
||||
|
||||
Thus $\alpha=inf\ B$
|
||||
|
||||
QED
|
||||
|
||||
### Field
|
||||
|
||||
| | addition | multiplication |
|
||||
|
||||
@@ -39,7 +39,7 @@ This implies $(m+1)x>\alpha$
|
||||
|
||||
Since $(m+1)x\in \alpha$, this contradicts the fact that $\alpha$ is an upper bound of $A$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### $\mathbb{Q}$ is dense in $\mathbb{R}$
|
||||
|
||||
@@ -59,7 +59,7 @@ By Archimedean property, $\exist n\in \mathbb{N}$ such that $n(y-x)>1$, and $\ex
|
||||
|
||||
So $-m_2<nx<m_1$. Thus $\exist m\in \mathbb{Z}$ such that $m-1\leq nx<m$ (Here we use a property of $\mathbb{Z}$) We have $ny>1+nx\geq 1+(m-1)=m$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### $\sqrt{2}\in \mathbb{R}$, $(\sqrt[n]{x}\in\mathbb{R})$
|
||||
|
||||
|
||||
@@ -94,6 +94,8 @@ So want $k\leq \frac{y^n-x}{ny^{n-1}}$
|
||||
|
||||
[For actual proof, see the text.]
|
||||
|
||||
QED
|
||||
|
||||
### Complex numbers
|
||||
|
||||
1. $=\{a+bi:a,b\in \mathbb{R}\}$.
|
||||
@@ -149,7 +151,9 @@ $$
|
||||
(\sum a_j b_j)^2=(\sum a_j^2)(\sum b_j^2)
|
||||
$$
|
||||
|
||||
Proof for real numbers:
|
||||
Proof:
|
||||
|
||||
For real numbers:
|
||||
|
||||
Let $A=\sum a_j^2,B=\sum b_j^2, C=\sum a_j b_j$, want to show $C^2\leq AB$
|
||||
|
||||
@@ -165,6 +169,8 @@ let $t=C/B$ to get $0\leq A-2(C/B)C+(C/B)^2B=A-\frac{C^2}{B}$
|
||||
|
||||
to generalize this to $\mathbb{C}$, $A=\sum |a_j|^2,B=\sum |b_j|^2,C=\sum |a_j \bar{b_j}|$.
|
||||
|
||||
QED
|
||||
|
||||
### Euclidean spaces
|
||||
|
||||
Nothing much to say. lol.
|
||||
|
||||
@@ -126,7 +126,9 @@ $A$ is countable, $n\in \mathbb{N}$,
|
||||
|
||||
$\implies A^n=\{(a_{1},...,a_{n}):a_1\in A, a_n\in A\}$, is countable.
|
||||
|
||||
Proof: Induct on $n$,
|
||||
Proof:
|
||||
|
||||
Induct on $n$,
|
||||
|
||||
Base case $n=1$,
|
||||
|
||||
@@ -136,14 +138,20 @@ Induction step: suppose $A^{n-1}$ is countable. Note $A^n=\{(b,a):b\in A^{n-1},a
|
||||
|
||||
Since $b$ is fixed, so this is in 1-1 correspondence with $A$, so it's countable by Theorem 2.12.
|
||||
|
||||
QED
|
||||
|
||||
#### Theorem 2.14
|
||||
|
||||
Let $A$ be the set of all sequences for 0s and 1s. Then $A$ is uncountable.
|
||||
|
||||
Proof: Let $E\subset A$ be a countable subset. We'll show $A\backslash E\neq \phi$ (i.e.$\exists t\in A$ such that $t\notin E$)
|
||||
Proof:
|
||||
|
||||
Let $E\subset A$ be a countable subset. We'll show $A\backslash E\neq \phi$ (i.e.$\exists t\in A$ such that $t\notin E$)
|
||||
|
||||
$E$ is countable so we can list it's elements $S_1,S_2,S_3,...$.
|
||||
|
||||
Then we define a new sequence $t$ which differs from $S_1$'s first bit and $S_2$'s second bit,...
|
||||
|
||||
This is called Cantor's diagonal argument.
|
||||
|
||||
QED
|
||||
|
||||
@@ -80,12 +80,16 @@ Let $(X,d)$ be a metric space, $\forall p\in X,\forall r>0$, $B_r(p)$ is an ope
|
||||
|
||||
*every ball is an open set*
|
||||
|
||||
Proof: Let $q\in B_r(p)$.
|
||||
Proof:
|
||||
|
||||
Let $q\in B_r(p)$.
|
||||
|
||||
Let $h=r-d(p,q)$.
|
||||
|
||||
Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r$. (using triangle inequality) So $S\in B_r(p)$.
|
||||
|
||||
QED
|
||||
|
||||
### Closed sets
|
||||
|
||||
1. $E\subset X,p\in X$. We say $p$ is a limit point of $E$ if $\forall r>0, (B_r(p)\cap E)\backslash {p}\neq \phi$.
|
||||
@@ -94,7 +98,9 @@ Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq
|
||||
|
||||
2. $E$ is closed if $E'\subset E$
|
||||
|
||||
Example: $X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$.
|
||||
Example:
|
||||
|
||||
$X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$.
|
||||
|
||||
$(1,1)$ is a limit point.
|
||||
|
||||
|
||||
@@ -41,7 +41,7 @@ let $B_s(p)\cap E)\backslash \{p\}={q_1,...,q_n}$
|
||||
|
||||
Then $(B_s(p)\cap E)\backslash \{p\}=\phi$, so $p\notin E$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 2.22 De Morgan's law
|
||||
|
||||
@@ -95,7 +95,7 @@ $$
|
||||
|
||||
So $(E^c)'\subset E^c$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 2.24
|
||||
|
||||
@@ -105,7 +105,7 @@ Proof:
|
||||
|
||||
Suppose $\forall \alpha, G_\alpha$ is open. Let $x\in \bigcup _{\alpha} G_\alpha$. Then $\exists \alpha_0$ such that $x\in G_{\alpha_0}$. Since $G_{\alpha_0}$ is open, $\exists r>0$ such that $B_r(x)\subset G_{\alpha_0}$ Then $B_r(x)\subset G_{\alpha_0}\subset \bigcup_{\alpha} G_\alpha$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
##### A finite intersection of open set is open
|
||||
|
||||
@@ -117,7 +117,7 @@ Let $x\in \bigcap^n_{i=1}G_i$, then $\forall i\in \{1,..,n\}$ and $G_i$ is open,
|
||||
|
||||
Let $r=min\{r_1,...,r_n\}$. Then $\forall i\in \{1,...,n\}$. $B_r(x)\subset B_{r_i}(x)\subset G_i$. So $B_r(x)\subset \bigcup_{i=1}^n G_i$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
The other two can be proved by **Theorem 2.22,2.23**
|
||||
|
||||
@@ -147,4 +147,4 @@ This proves (b)
|
||||
|
||||
So $\bar{E}^c$ is open
|
||||
|
||||
EOP
|
||||
QED
|
||||
@@ -37,7 +37,7 @@ Let $h>0$. Since $y-h$ is not an upper bound of $E$, $\exists x\in E$ such that
|
||||
|
||||
Since $y$ is an upper bound of $E$, $x\leq y$. So $x\in B_n(y)\cap E$, so $B_h(y)\cap E\neq \phi$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Remark 2.29
|
||||
|
||||
@@ -75,7 +75,7 @@ To show $G\cap Y\subset E$.
|
||||
|
||||
$G\cap Y=\left(\bigcup_{p\in E}V_p\right)\cap Y=\bigcup_{p\in E}(V_p\cap Y)\subset E$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Compact sets
|
||||
|
||||
@@ -101,4 +101,4 @@ as we can build an infinite open cover $\bigcup_{i\in Z} (i,i+2)$ and it does no
|
||||
|
||||
Suppose we consider the sub-collection $\{n_i,n_i+2:i=1,..,k\}$, Then $N+3$ is not in the union, where $N=max\{n_1,...,n_k\}$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
@@ -10,7 +10,7 @@ Topics include:
|
||||
4. Convergence of Series and Sequences
|
||||
5. Limits and Continuity
|
||||
|
||||
The course is taught by [Alan Chang](https://math.wustl.edu/people/alan-chang).
|
||||
The course is taught by [Alan Chang](https://math.wustl.edu/pQEDle/alan-chang).
|
||||
|
||||
It is easy in my semester perhaps, it is the first course I got 3 perfect scores in exams. (Unfortunately, I did not get the extra credit for the third midterm exam.)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user