update notations and fix typos
This commit is contained in:
@@ -74,7 +74,7 @@ And $\forall \epsilon>0,d(p,p')<2\epsilon\implies d(p,p')=0$. So $p=p'$
|
||||
|
||||
Let $\epsilon>0$. Choose $N\in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$. Then if $n\geq N$, $d(p_n,p)<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.3
|
||||
|
||||
|
||||
Reference in New Issue
Block a user