update notations and fix typos
This commit is contained in:
@@ -14,7 +14,7 @@ $$
|
||||
Proof:
|
||||
Let $\epsilon>0$ be arbitrary, then $\exists N$ such that $\forall n\geq N,|a_n-a|<\epsilon$.
|
||||
Then if $n\geq N$, $|a_n-a|\leq \sqrt{|a_n-a|^2}\leq\sqrt{|a_n-a|^2+|b_n-b|^2}=|x_n-(a,b)|<\epsilon$.
|
||||
EOP
|
||||
QED
|
||||
(b) If $x_n\to (a,b)$, then $b_n\to b$.
|
||||
This follows from the same argument from (a)
|
||||
2. Prove the $\implies$ direction.
|
||||
@@ -28,7 +28,7 @@ $$
|
||||
Since $a_n\to a$, $\exists N_1$ such that $\forall n\geq N_1,|a_n-a|<\frac{\epsilon}{\sqrt{2}}$.
|
||||
Since $b_n\to b$, $\exists N_2$ such that $\forall n\geq N_2,|b_n-b|<\frac{\epsilon}{\sqrt{2}}$.
|
||||
Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$, $|a_n-a|<\epsilon$ and $|b_n-b|<\sqrt{\frac{\epsilon^2}{2}+\frac{\epsilon^2}{2}}=\epsilon$.
|
||||
EOP
|
||||
QED
|
||||
|
||||
## New Materials
|
||||
|
||||
@@ -82,7 +82,7 @@ $$
|
||||
\left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s-s_n|}{|s||s_n|}<\frac{\frac{\epsilon|s|^2}{2}}{|s|^2}=\epsilon
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Subsequences
|
||||
|
||||
@@ -108,7 +108,7 @@ $\implies$:
|
||||
|
||||
Thought process: show what if the sequence does not converge to $p$, then there exists a subsequence that does not converge to $p$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.6
|
||||
|
||||
|
||||
Reference in New Issue
Block a user