update notations and fix typos
This commit is contained in:
@@ -17,7 +17,7 @@ Let $n\geq N$. Since $(s_n)$ is monotonic increasing, $s_n\geq s_N>t-\epsilon$.
|
||||
|
||||
So $(s_n)$ converges to $t$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
## New materials
|
||||
|
||||
@@ -47,7 +47,7 @@ Step 3: By induction, we can get a sequence $n_1,n_2,\cdots$ such that $\forall
|
||||
|
||||
Then $(p_{n_i})$ is a subsequence of $(p_n)$ and $p_{n_i}\to q$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Cauchy Sequences
|
||||
|
||||
@@ -93,7 +93,7 @@ If $m,n\geq N$, then $d(p_m,p_n)\leq d(p_m,p)+d(p,p_n)<\epsilon+\epsilon=2\epsil
|
||||
|
||||
*You can also use $\frac{\epsilon}{2}$ instead of $\epsilon$ in the above proof, just for fun.*
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Lemma 3.11 (b)
|
||||
|
||||
@@ -107,7 +107,7 @@ Let $r=max\{d(p_i,p_j);1\leq i,j\leq N\}+1$.
|
||||
|
||||
Then $\forall n\in \mathbb{N}$, $p_n\in B_r(p_N)$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
> Note: This proof is nearly identical to the proof of convergent sequences implies bounded.
|
||||
|
||||
@@ -148,5 +148,5 @@ By definition of supremum, the claim implies that $\forall \epsilon>0$, $diam(\o
|
||||
|
||||
(b) By **Theorem 2.36**, $\bigcap_{n=1}^{\infty}K_n\neq \phi$. Suppose for contradiction that there are at least two distinct points $p,q\in \bigcap_{n=1}^{\infty}K_n$. Then for all $n\in \mathbb{N}$, $x,y\in K_n$ so $diam K_n\geq d(p,q)>0$. Then diameter of $K_n$ does not converge to 0.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
|
||||
Reference in New Issue
Block a user