update notations and fix typos
This commit is contained in:
@@ -114,7 +114,7 @@ Therefore, $e\leq \liminf_{n\to\infty} t_n\leq \limsup_{n\to\infty} t_n\leq e$.
|
||||
|
||||
So $\lim_{n\to\infty} t_n$ exists and $\lim_{n\to\infty} t_n = e$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.32
|
||||
|
||||
@@ -156,7 +156,7 @@ $$
|
||||
|
||||
Contradiction.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### The root and ratio tests
|
||||
|
||||
@@ -190,7 +190,7 @@ Thus $a_n\not\to 0$, $\sum_{n=0}^{\infty} a_n$ diverges.
|
||||
|
||||
(c) $\sum_{n=0}^{\infty} \frac{1}{n}$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ both have $\alpha = 1$. but the first diverges and the second converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.34 (Ratio test)
|
||||
|
||||
@@ -232,7 +232,7 @@ i.e. $\forall n\geq N, |a_n| < \beta^{n-N}|a_N|=\beta^n(\beta^{-N}|a_N|)$.
|
||||
|
||||
Since $\sum_{n=N}^{\infty} \beta^n$ converges, by comparison test, $\sum_{n=0}^{\infty} a_n$ converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
We will skip **Theorem 3.37**. One implication is that if ratio test can be applied, then root test can be applied.
|
||||
|
||||
@@ -267,4 +267,4 @@ $$
|
||||
|
||||
By root test, the series converges absolutely for all $z\in\mathbb{C}$ with $|z| < R$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Reference in New Issue
Block a user