update notations and fix typos
This commit is contained in:
@@ -56,7 +56,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.42 (Dirichlet's test)
|
||||
|
||||
@@ -101,7 +101,7 @@ $$
|
||||
|
||||
So $\sum a_nb_n$ converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 3.43 (Alternating series test)
|
||||
|
||||
@@ -122,7 +122,7 @@ So $|A_n|\leq 1$ for all $n\in \mathbb{N}$.
|
||||
|
||||
By Theorem 3.42, $\sum_{n=1}^\infty a_n b_n$ converges.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Example:
|
||||
|
||||
@@ -161,7 +161,7 @@ So $|A_n|\leq \frac{2}{|1-z|}$ for all $n\in \mathbb{N}$.
|
||||
|
||||
By Dirichlet's test, $\sum_{n=0}^\infty b_nz^n$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
### Absolute convergence
|
||||
|
||||
@@ -183,7 +183,7 @@ $$
|
||||
\sum_{n=0}^\infty |a_n|\geq \sum_{n=0}^\infty a_n
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Rearrangement of series:
|
||||
|
||||
@@ -257,4 +257,4 @@ For every $n\in \mathbb{N}$, there exists a $p$ such that $\{1,2,\cdots,n\}\subs
|
||||
|
||||
Then $|s_n-t_n|\leq \sum_{k=N+1}^\infty |a_k|$.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
Reference in New Issue
Block a user