update notations and fix typos
This commit is contained in:
@@ -22,10 +22,12 @@ Let $S=\mathbb{Z}$.
|
||||
|
||||
## Continue
|
||||
|
||||
### LUBP
|
||||
### LUBP (The least upper bound property)
|
||||
|
||||
Proof that $LUBP\implies GLBP$.
|
||||
|
||||
Proof:
|
||||
|
||||
Let $S$ be an ordered set with LUBP. Let $B<S$ be non-empty and bounded below.
|
||||
|
||||
Let $L=y\in S:y$ is a lower bound of $B$. From the picture, we expect $\sup L=\inf B$ First we'll show $\sup L$ exists.
|
||||
@@ -55,6 +57,8 @@ Let's say $\alpha=sup\ L$. We claim that $\alpha=inf\ B$. We need to show $2$ th
|
||||
|
||||
Thus $\alpha=inf\ B$
|
||||
|
||||
QED
|
||||
|
||||
### Field
|
||||
|
||||
| | addition | multiplication |
|
||||
|
||||
Reference in New Issue
Block a user