update notations and fix typos
This commit is contained in:
@@ -94,6 +94,8 @@ So want $k\leq \frac{y^n-x}{ny^{n-1}}$
|
||||
|
||||
[For actual proof, see the text.]
|
||||
|
||||
QED
|
||||
|
||||
### Complex numbers
|
||||
|
||||
1. $=\{a+bi:a,b\in \mathbb{R}\}$.
|
||||
@@ -149,7 +151,9 @@ $$
|
||||
(\sum a_j b_j)^2=(\sum a_j^2)(\sum b_j^2)
|
||||
$$
|
||||
|
||||
Proof for real numbers:
|
||||
Proof:
|
||||
|
||||
For real numbers:
|
||||
|
||||
Let $A=\sum a_j^2,B=\sum b_j^2, C=\sum a_j b_j$, want to show $C^2\leq AB$
|
||||
|
||||
@@ -165,6 +169,8 @@ let $t=C/B$ to get $0\leq A-2(C/B)C+(C/B)^2B=A-\frac{C^2}{B}$
|
||||
|
||||
to generalize this to $\mathbb{C}$, $A=\sum |a_j|^2,B=\sum |b_j|^2,C=\sum |a_j \bar{b_j}|$.
|
||||
|
||||
QED
|
||||
|
||||
### Euclidean spaces
|
||||
|
||||
Nothing much to say. lol.
|
||||
|
||||
Reference in New Issue
Block a user