update notations and fix typos

This commit is contained in:
Zheyuan Wu
2025-02-25 20:41:35 -06:00
parent 419ea07352
commit 27bff83685
71 changed files with 920 additions and 430 deletions

View File

@@ -80,12 +80,16 @@ Let $(X,d)$ be a metric space, $\forall p\in X,\forall r>0$, $B_r(p)$ is an ope
*every ball is an open set*
Proof: Let $q\in B_r(p)$.
Proof:
Let $q\in B_r(p)$.
Let $h=r-d(p,q)$.
Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r$. (using triangle inequality) So $S\in B_r(p)$.
QED
### Closed sets
1. $E\subset X,p\in X$. We say $p$ is a limit point of $E$ if $\forall r>0, (B_r(p)\cap E)\backslash {p}\neq \phi$.
@@ -94,7 +98,9 @@ Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq
2. $E$ is closed if $E'\subset E$
Example: $X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$.
Example:
$X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$.
$(1,1)$ is a limit point.