update notations and fix typos
This commit is contained in:
@@ -80,12 +80,16 @@ Let $(X,d)$ be a metric space, $\forall p\in X,\forall r>0$, $B_r(p)$ is an ope
|
||||
|
||||
*every ball is an open set*
|
||||
|
||||
Proof: Let $q\in B_r(p)$.
|
||||
Proof:
|
||||
|
||||
Let $q\in B_r(p)$.
|
||||
|
||||
Let $h=r-d(p,q)$.
|
||||
|
||||
Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r$. (using triangle inequality) So $S\in B_r(p)$.
|
||||
|
||||
QED
|
||||
|
||||
### Closed sets
|
||||
|
||||
1. $E\subset X,p\in X$. We say $p$ is a limit point of $E$ if $\forall r>0, (B_r(p)\cap E)\backslash {p}\neq \phi$.
|
||||
@@ -94,7 +98,9 @@ Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq
|
||||
|
||||
2. $E$ is closed if $E'\subset E$
|
||||
|
||||
Example: $X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$.
|
||||
Example:
|
||||
|
||||
$X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$.
|
||||
|
||||
$(1,1)$ is a limit point.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user