update notations and fix typos

This commit is contained in:
Zheyuan Wu
2025-02-25 20:41:35 -06:00
parent 419ea07352
commit 27bff83685
71 changed files with 920 additions and 430 deletions

View File

@@ -40,7 +40,7 @@ By **Theorem 6.11**, $f^2,g^2\in \mathscr{R}(\alpha)$ on $[a, b]$.
By linearity, $fg=1/4((f+g)^2-(f-g)^2)\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP
QED
(b) $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$, and $|\int_a^b f d\alpha|\leq \int_a^b |f| d\alpha$.
@@ -54,7 +54,7 @@ Let $c=-1$ or $c=1$. such that $c\int_a^b f d\alpha=| \int_a^b f d\alpha|$.
By linearity, $c\int_a^b f d\alpha=\int_a^b cfd\alpha$. Since $cf\leq |f|$, by monotonicity, $|\int_a^b cfd\alpha|=\int_a^b cfd\alpha\leq \int_a^b |f| d\alpha$.
EOP
QED
### Indicator Function
@@ -104,6 +104,6 @@ Since $f$ is continuous at $s$, when $x\to s$, $U(P,f,\alpha)\to f(s)$ and $L(P,
Therefore, $U(P,f,\alpha)-L(P,f,\alpha)\to 0$, $f\in \mathscr{R}(\alpha)$ on $[a, b]$, and $\int_a^b f d\alpha=f(s)$.
EOP
QED

View File

@@ -79,7 +79,7 @@ $$
\end{aligned}
$$
EOP
QED
If $f\in \mathscr{R}$, and there exists a differentiable function $F:[a,b]\to \mathbb{R}$ such that $F'=f$ on $(a,b)$, then
@@ -107,4 +107,4 @@ $$
So, $f\in \mathscr{R}$ and $\int_a^b f(x)\ dx=F(b)-F(a)$.
EOP
QED

View File

@@ -26,7 +26,7 @@ Proof:
To prove Riemann's Integrability Criterion, we need to show that a bounded function $f$ is Riemann integrable if and only if for every $\sigma, \epsilon > 0$, there exists a partition $P$ of $[a, b]$ such that the sum of the lengths of the intervals where the oscillation exceeds $\sigma$ is less than $\epsilon$.
EOP
QED
#### Proposition 2.4

View File

@@ -36,7 +36,7 @@ So $S\setminus \bigcup_{i=1}^{n} I_i$ contains only finitely many points, say $N
So $c_e(S)\leq \ell(C)\leq c_e(S')+\epsilon$.
EOP
QED
#### Corollary: sef of first species

View File

@@ -32,7 +32,7 @@ So $d\in S$, this contradicts the definition of $\beta$ as the supremum of $S$.
So $\beta \geq b$.
EOP
QED
### Reviewing sections for Math 4111
@@ -91,4 +91,4 @@ Setting $r=\sup a_n$ (by the least upper bound property of real numbers), $r\in
This contradicts the assumption that $a_n,b_n$ as the first element in the list.
EOP
QED

View File

@@ -38,7 +38,7 @@ If $b\in T$, then by definition of $T$, $b \notin \psi(b)$, but $\psi(b) = T$, w
If $b \notin T$, then $b \in \psi(b)$, which is also a contradiction since $b\in T$. Therefore, $2^S$ cannot have the same cardinality as $S$.
EOP
QED
### Back to Hankel's Conjecture

View File

@@ -39,7 +39,7 @@ $$
So $h'(x)=\frac{h(t)-h(x)}{t-x}=(f'(x)+u(t))(g'(y)+v(s))$. Since $u(t)\to 0$ and $v(s)\to 0$ as $t\to x$ and $s\to y$, we have $h'(x)=g'(y)f'(x)$.
EOP
QED
#### Example 5.6
@@ -135,4 +135,4 @@ If $x<t<x+\delta$, then $f(x)\geq f(t)$ so $\frac{f(t)-f(x)}{t-x}\geq 0$.
So $\lim_{t\to x}\frac{f(t)-f(x)}{t-x}=0$.
EOP
QED

View File

@@ -39,7 +39,7 @@ Consider three cases:
In all cases, $h$ has a local minimum or maximum in $(a,b)$.
EOP
QED
#### Theorem 5.10 Mean Value Theorem

View File

@@ -32,7 +32,7 @@ Hence, $g$ attains its infimum on $[a,b]$ at some $x\in (a,b)$. Then this $x$ is
So $g'(x)=0$ and $f'(x)=\lambda$.
EOP
QED
### L'Hôpital's Rule
@@ -136,4 +136,4 @@ $$
$\forall x\in (a,c_2)$, $\frac{f(x)}{g(x)}<q$.
EOP
QED

View File

@@ -34,7 +34,7 @@ Set $F(x)=-f(x)$. and $q=-A+\epsilon>-A$. Apply main step, $\exists c_2\in (a,b)
We take $c=\min(c_1,c_2)$. Then $\forall x\in (a,c)$, $\frac{f(x)}{g(x)}<q$.
EOP
QED
### Higher Order Derivatives
@@ -114,6 +114,6 @@ By Mean Value Theorem, $\exists x_n\in (\alpha,x_{n-1})$ such that $g^{(n)}(x_n)
Since $g^{(n)}(\alpha)=0$ for $k=0,1,2,\cdots,n-1$, we can find $x_n\in (\alpha,x_{n-1})$ such that $g^{(n)}(x_n)=0$.
EOP
QED
## Chapter 6: Riemann-Stieltjes Integral

View File

@@ -95,7 +95,7 @@ $$
Same for $U(P_k,f,\alpha)\geq U(P_{k-1},f,\alpha)$.
EOP
QED
#### Theorem 6.5
@@ -119,4 +119,4 @@ $$
\underline{\int_a^b}f(x)d\alpha\leq \sup_{P_1}L(P_1,f,\alpha)\leq \inf_{P_2}U(P_2,f,\alpha)=\overline{\int_a^b}f(x)d\alpha
$$
EOP
QED

View File

@@ -50,7 +50,7 @@ $$
So $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$.
EOP
QED
#### Theorem 6.8
@@ -93,4 +93,4 @@ $$
So, $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$.
EOP
QED

View File

@@ -40,7 +40,7 @@ $$
Therefore, $U(P,f,\alpha) - L(P,f,\alpha)<U(P,\alpha,f) - L(P,\alpha,f) < \epsilon$, so $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP
QED
#### Theorem 6.10
@@ -76,7 +76,7 @@ Since $\epsilon$ is arbitrary, we have $U(P,f,\alpha) - L(P,f,\alpha) < \epsilon
Therefore, $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP
QED
#### Theorem 6.11

View File

@@ -53,7 +53,7 @@ $$
Since $\epsilon$ is arbitrary, $h\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP
QED
### Properties of Integrable Functions
@@ -108,4 +108,4 @@ So $U(P,h,\alpha)\leq U(P,f,\alpha)+U(P,g,\alpha)\leq \int_a^b f d\alpha + \int_
Since $\epsilon$ is arbitrary, $\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$.
EOP
QED