update notations and fix typos

This commit is contained in:
Zheyuan Wu
2025-02-25 20:41:35 -06:00
parent 419ea07352
commit 27bff83685
71 changed files with 920 additions and 430 deletions

View File

@@ -40,7 +40,7 @@ By **Theorem 6.11**, $f^2,g^2\in \mathscr{R}(\alpha)$ on $[a, b]$.
By linearity, $fg=1/4((f+g)^2-(f-g)^2)\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP
QED
(b) $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$, and $|\int_a^b f d\alpha|\leq \int_a^b |f| d\alpha$.
@@ -54,7 +54,7 @@ Let $c=-1$ or $c=1$. such that $c\int_a^b f d\alpha=| \int_a^b f d\alpha|$.
By linearity, $c\int_a^b f d\alpha=\int_a^b cfd\alpha$. Since $cf\leq |f|$, by monotonicity, $|\int_a^b cfd\alpha|=\int_a^b cfd\alpha\leq \int_a^b |f| d\alpha$.
EOP
QED
### Indicator Function
@@ -104,6 +104,6 @@ Since $f$ is continuous at $s$, when $x\to s$, $U(P,f,\alpha)\to f(s)$ and $L(P,
Therefore, $U(P,f,\alpha)-L(P,f,\alpha)\to 0$, $f\in \mathscr{R}(\alpha)$ on $[a, b]$, and $\int_a^b f d\alpha=f(s)$.
EOP
QED