update notations and fix typos

This commit is contained in:
Zheyuan Wu
2025-02-25 20:41:35 -06:00
parent 419ea07352
commit 27bff83685
71 changed files with 920 additions and 430 deletions

View File

@@ -18,14 +18,14 @@ So
$$
\begin{aligned}
\frac{\partial f}{\partial \zeta}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
\frac{\partial f}{\partial z}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\
\end{aligned}
$$
$$
\begin{aligned}
\frac{\partial f}{\partial \overline{\zeta}}&=\frac{1}{2}\left(u_x+v_y\right)+i\frac{1}{2}\left(v_x+u_y\right)\\
\frac{\partial f}{\partial \overline{z}}&=\frac{1}{2}\left(u_x+v_y\right)+i\frac{1}{2}\left(v_x+u_y\right)\\
&=\frac{1}{2}\left(\alpha-\delta\right)+i\frac{1}{2}\left(\beta+\sigma\right)\\
\end{aligned}
$$
@@ -42,11 +42,11 @@ $$
So,
$$
\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a
\frac{\partial f}{\partial z}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a
$$
$$
\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0
\frac{\partial f}{\partial \overline{z}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0
$$
> Less pain to represent a complex function using four real numbers.
@@ -59,10 +59,10 @@ Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
The linear fractional transformation is defined as
$$
\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}
\phi(z)=\frac{az+b}{cz+d}
$$
If we let $\psi(\zeta)=\frac{e\zeta-f}{-g\zeta+h}$ also be a linear fractional transformation, then $\phi\circ\psi$ is also a linear fractional transformation.
If we let $\psi(z)=\frac{ez-f}{-gz+h}$ also be a linear fractional transformation, then $\phi\circ\psi$ is also a linear fractional transformation.
New coefficients can be solved by
@@ -82,7 +82,7 @@ m&n
\end{pmatrix}
$$
So $\phi\circ\psi(\zeta)=\frac{k\zeta+l}{m\zeta+n}$
So $\phi\circ\psi(z)=\frac{kz+l}{mz+n}$
### Complex projective space
@@ -98,7 +98,7 @@ $\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$.
We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{C}\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{C}\setminus\{0\}$ such that $(a,b)=(tc,td)$.
So, $\forall \zeta\in\mathbb{C}\setminus\{0\}$:
So, $\forall z\in\mathbb{C}\setminus\{0\}$:
If $a\neq 0$, then $(a,b)\sim(1,\frac{b}{a})$.
@@ -116,33 +116,33 @@ c & d
Suppose $M$ is non-singular. Then $ad-bc\neq 0$.
If $M\begin{pmatrix}
\zeta_1\\
\zeta_2
z_1\\
z_2
\end{pmatrix}=\begin{pmatrix}
\omega_1\\
\omega_2
\end{pmatrix}$, then $M\begin{pmatrix}
t\zeta_1\\
t\zeta_2
tz_1\\
tz_2
\end{pmatrix}=\begin{pmatrix}
t\omega_1\\
t\omega_2
\end{pmatrix}$.
So, $M$ induces a map $\phi_M:\mathbb{C}P^1\to\mathbb{C}P^1$ defined by $M\begin{pmatrix}
\zeta\\
z\\
1
\end{pmatrix}=\begin{pmatrix}
\frac{a\zeta+b}{c\zeta+d}\\
\frac{az+b}{cz+d}\\
1
\end{pmatrix}$.
$\phi_M(\zeta)=\frac{a\zeta+b}{c\zeta+d}$.
$\phi_M(z)=\frac{az+b}{cz+d}$.
If we let $M_2=\begin{pmatrix}
e &f\\
g &h
\end{pmatrix}$, where $ad-bc\neq 0$ and $eh-fg\neq 0$, then $\phi_{M_2}(\zeta)=\frac{e\zeta+f}{g\zeta+h}$.
\end{pmatrix}$, where $ad-bc\neq 0$ and $eh-fg\neq 0$, then $\phi_{M_2}(z)=\frac{ez+f}{gz+h}$.
So, $M_2M_1=\begin{pmatrix}
a&b\\
@@ -151,15 +151,15 @@ c&d
e&f\\
g&h
\end{pmatrix}=\begin{pmatrix}
\zeta\\
z\\
1
\end{pmatrix}$.
This also gives $\begin{pmatrix}
k\zeta+l\\
m\zeta+n
kz+l\\
mz+n
\end{pmatrix}\sim\begin{pmatrix}
\frac{k\zeta+l}{m\zeta+n}\\
\frac{kz+l}{mz+n}\\
1
\end{pmatrix}$.
@@ -187,17 +187,17 @@ If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is con
Proof:
Know that $\phi_0\circ\phi(\zeta)=\zeta$,
Know that $\phi_0\circ\phi(z)=z$,
Then $\phi(\zeta)=\phi_0^{-1}\circ\phi\circ\phi_0(\zeta)$.
Then $\phi(z)=\phi_0^{-1}\circ\phi\circ\phi_0(z)$.
So $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$.
So $\phi(z)=\frac{az+b}{cz+d}$.
$\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\infty)=\frac{a}{c}$ and $\phi(-\frac{d}{c})=\infty$.
So, $\phi$ is conformal.
EOP
QED
#### Proposition 3.4 of Fixed points
@@ -205,7 +205,7 @@ Any non-constant linear fractional transformation except the identity transforma
Proof:
Let $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$.
Let $\phi(z)=\frac{az+b}{cz+d}$.
Case 1: $c=0$
@@ -213,19 +213,19 @@ Then $\infty$ is a fixed point.
Case 2: $c\neq 0$
Then $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$.
Then $\phi(z)=\frac{az+b}{cz+d}$.
The solution of $\phi(\zeta)=\zeta$ is $c\zeta^2+(d-a)\zeta-b=0$.
The solution of $\phi(z)=z$ is $cz^2+(d-a)z-b=0$.
Such solutions are $\zeta=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
So, $\phi$ has 1 or 2 fixed points.
EOP
QED
#### Proposition 3.5 of triple transitivity
If $\zeta_1,\zeta_2,\zeta_3\in\mathbb{C}P^1$ are distinct, then there exists a non-constant linear fractional transformation $\phi$ such that $\phi(\zeta_1)=\zeta_2$ and $\phi(\zeta_3)=\infty$.
If $z_1,z_2,z_3\in\mathbb{C}P^1$ are distinct, then there exists a non-constant linear fractional transformation $\phi$ such that $\phi(z_1)=z_2$ and $\phi(z_3)=\infty$.
Proof as homework.
@@ -235,6 +235,4 @@ We defined clircle to be a circle or a line.
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles.
Proof:
Continue on next lecture.
Proof continue on next lecture.