update notations and fix typos
This commit is contained in:
@@ -12,16 +12,16 @@ We defined clircle to be a circle or a line.
|
||||
|
||||
The circle equation is:
|
||||
|
||||
Let $\zeta=u+iv$ be the center of the circle, $r$ be the radius of the circle.
|
||||
Let $z=u+iv$ be the center of the circle, $r$ be the radius of the circle.
|
||||
|
||||
$$
|
||||
circle=\{z\in\mathbb{C}:|\zeta-c|=r\}
|
||||
circle=\{z\in\mathbb{C}:|z-c|=r\}
|
||||
$$
|
||||
|
||||
This is:
|
||||
|
||||
$$
|
||||
|\zeta|^2-c\overline{\zeta}-\overline{c}\zeta+|c|^2-r^2=0
|
||||
|z|^2-c\overline{z}-\overline{c}z+|c|^2-r^2=0
|
||||
$$
|
||||
|
||||
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles.
|
||||
@@ -29,7 +29,7 @@ If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps c
|
||||
We claim that a map is circle preserving if and only if for some $\alpha,\beta,\gamma,\delta\in\mathbb{R}$.
|
||||
|
||||
$$
|
||||
\alpha|\zeta|^2+\beta Re(\zeta)+\gamma Im(\zeta)+\delta=0
|
||||
\alpha|z|^2+\beta Re(z)+\gamma Im(z)+\delta=0
|
||||
$$
|
||||
|
||||
when $\alpha=0$, it is a line.
|
||||
@@ -38,7 +38,7 @@ when $\alpha\neq 0$, it is a circle.
|
||||
|
||||
Proof:
|
||||
|
||||
Let $w=u+iv=\frac{1}{\zeta}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$.
|
||||
Let $w=u+iv=\frac{1}{z}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$.
|
||||
|
||||
Then the original equation becomes:
|
||||
|
||||
@@ -48,13 +48,13 @@ $$
|
||||
|
||||
Which is in the form of circle equation.
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
## Chapter 4 Elementary functions
|
||||
|
||||
> $e^t=\sum_{n=0}^{\infty}\frac{t^n}{n!}$
|
||||
|
||||
So, following the definition of $e^\zeta$, we have:
|
||||
So, following the definition of $e^z$, we have:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@@ -65,51 +65,51 @@ e^{x+iy}&=e^xe^{iy} \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
### $e^\zeta$
|
||||
### $e^z$
|
||||
|
||||
The exponential of $e^\zeta=x+iy$ is defined as:
|
||||
The exponential of $e^z=x+iy$ is defined as:
|
||||
|
||||
$$
|
||||
e^\zeta=exp(\zeta)=e^x(\cos y+i\sin y)
|
||||
e^z=exp(z)=e^x(\cos y+i\sin y)
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
|e^\zeta|=|e^x||\cos y+i\sin y|=e^x
|
||||
|e^z|=|e^x||\cos y+i\sin y|=e^x
|
||||
$$
|
||||
|
||||
#### Theorem 4.3 $e^\zeta$ is holomorphic
|
||||
#### Theorem 4.3 $e^z$ is holomorphic
|
||||
|
||||
$e^\zeta$ is holomorphic on $\mathbb{C}$.
|
||||
$e^z$ is holomorphic on $\mathbb{C}$.
|
||||
|
||||
Proof:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{\partial}{\partial\zeta}e^\zeta&=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{i}{\partial y}\right)e^x(\cos y+i\sin y) \\
|
||||
\frac{\partial}{\partial z}e^z&=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{i}{\partial y}\right)e^x(\cos y+i\sin y) \\
|
||||
&=\frac{1}{2}e^x(\cos y+i\sin y)+ie^x(-\sin y+i\cos y) \\
|
||||
&=0
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 4.4 $e^\zeta$ is periodic
|
||||
#### Theorem 4.4 $e^z$ is periodic
|
||||
|
||||
$e^\zeta$ is periodic with period $2\pi i$.
|
||||
$e^z$ is periodic with period $2\pi i$.
|
||||
|
||||
Proof:
|
||||
|
||||
$$
|
||||
e^{\zeta+2\pi i}=e^\zeta e^{2\pi i}=e^\zeta\cdot 1=e^\zeta
|
||||
e^{z+2\pi i}=e^z e^{2\pi i}=e^z\cdot 1=e^z
|
||||
$$
|
||||
|
||||
EOP
|
||||
QED
|
||||
|
||||
#### Theorem 4.5 $e^\zeta$ as a map
|
||||
#### Theorem 4.5 $e^z$ as a map
|
||||
|
||||
$e^\zeta$ is a map from $\mathbb{C}$ to $\mathbb{C}$ with period $2\pi i$.
|
||||
$e^z$ is a map from $\mathbb{C}$ to $\mathbb{C}$ with period $2\pi i$.
|
||||
|
||||
$$
|
||||
e^{\pi i}+1=0
|
||||
@@ -119,36 +119,36 @@ This is a map from cartesian coordinates to polar coordinates, where $e^x$ is th
|
||||
|
||||
This map attains every value in $\mathbb{C}\setminus\{0\}$.
|
||||
|
||||
#### Definition 4.6-8 $\cos\zeta$ and $\sin\zeta$
|
||||
#### Definition 4.6-8 $\cos z$ and $\sin z$
|
||||
|
||||
$$
|
||||
\cos\zeta=\frac{1}{2}(e^{i\zeta}+e^{-i\zeta})
|
||||
\cos z=\frac{1}{2}(e^{iz}+e^{-iz})
|
||||
$$
|
||||
|
||||
$$
|
||||
\sin\zeta=\frac{1}{2i}(e^{i\zeta}-e^{-i\zeta})
|
||||
\sin z=\frac{1}{2i}(e^{iz}-e^{-iz})
|
||||
$$
|
||||
|
||||
$$
|
||||
\cosh\zeta=\frac{1}{2}(e^\zeta+e^{-\zeta})
|
||||
\cosh z=\frac{1}{2}(e^z+e^{-z})
|
||||
$$
|
||||
|
||||
$$
|
||||
\sinh\zeta=\frac{1}{2}(e^\zeta-e^{-\zeta})
|
||||
\sinh z=\frac{1}{2}(e^z-e^{-z})
|
||||
$$
|
||||
|
||||
From this definition, we can see that $\cos\zeta$ and $\sin\zeta$ are no longer bounded.
|
||||
From this definition, we can see that $\cos z$ and $\sin z$ are no longer bounded in the complex plane.
|
||||
|
||||
And this definition is still compatible with the previous definition of $\cos$ and $\sin$ when $\zeta$ is real.
|
||||
And this definition is still compatible with the previous definition of $\cos$ and $\sin$ when $z$ is real.
|
||||
|
||||
Moreover,
|
||||
|
||||
$$
|
||||
\cosh(i\zeta)=\cos\zeta
|
||||
\cosh(iz)=\cos z
|
||||
$$
|
||||
|
||||
$$
|
||||
\sinh(i\zeta)=i\sin\zeta
|
||||
\sinh(iz)=i\sin z
|
||||
$$
|
||||
|
||||
### Logarithm
|
||||
@@ -175,37 +175,58 @@ If $y\in(-\pi,\pi]$, then $\log a=b$ means $e^b=a$ and $Im(b)\in(-\pi,\pi]$.
|
||||
|
||||
If $a=re^{i\theta}$, then $\log a=\log r+i(\theta_0+2k\pi)$.
|
||||
|
||||
#### Definition 4.10
|
||||
#### Definition 4.10 of Branch of $\arg z$ and $\log z$
|
||||
|
||||
Let $G$ be an open connected subset of $\mathbb{C}\setminus\{0\}$.
|
||||
|
||||
A branch of $\arg(\zeta)$ in $G$ is a continuous function $\alpha$, such that $\alpha(\zeta)$ is a value of $\arg(\zeta)$.
|
||||
A branch of $\arg(z)$ in $G$ is a continuous function $\alpha:G\to G$, such that $\alpha(z)$ is a value of $\arg(z)$.
|
||||
|
||||
A branch of $\log(\zeta)$ in $G$ is a continuous function $\beta$, such that $e^{\beta(\zeta)}=\zeta$.
|
||||
A branch of $\log(z)$ in $G$ is a continuous function $\beta$, such that $e^{\beta(z)}=z$.
|
||||
|
||||
Note: $G$ has a branch of $\arg(\zeta)$ if and only if it has a branch of $\log(\zeta)$.
|
||||
Note: $G$ has a branch of $\arg(z)$ if and only if it has a branch of $\log(z)$.
|
||||
|
||||
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(\zeta)$ exists.
|
||||
Proof:
|
||||
|
||||
Suppose $\alpha_1$ and $\alpha_2$ are two branches of $\arg(\zeta)$ in $G$.
|
||||
Suppose there exists $\alpha(z)$ such that $\forall z\in G$, $\alpha(z)\in G$, then $l(z)=\ln|z|+i\alpha(z)$ is a branch of $\log(z)$.
|
||||
|
||||
Suppose there exists $l(z)$ such that $\forall z\in G$, $l(z)\in G$, then $\alpha(z)=Im(z)$ is a branch of $\arg(z)$.
|
||||
|
||||
QED
|
||||
|
||||
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(z)$ exists.
|
||||
|
||||
#### Corollary of 4.10
|
||||
|
||||
Suppose $\alpha_1$ and $\alpha_2$ are two branches of $\arg(z)$ in $G$.
|
||||
|
||||
Then,
|
||||
|
||||
$$
|
||||
\alpha_1(\zeta)-\alpha_2(\zeta)=2k\pi i
|
||||
\alpha_1(z)-\alpha_2(z)=2k\pi
|
||||
$$
|
||||
|
||||
for some $k\in\mathbb{Z}$.
|
||||
|
||||
|
||||
Suppose $l_1$ and $l_2$ are two branches of $\log(z)$ in $G$.
|
||||
|
||||
Then,
|
||||
|
||||
$$
|
||||
l_1(z)-l_2(z)=2k\pi i
|
||||
$$
|
||||
|
||||
for some $k\in\mathbb{Z}$.
|
||||
|
||||
#### Theorem 4.11
|
||||
|
||||
$\log(\zeta)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
|
||||
$\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
|
||||
|
||||
Proof:
|
||||
|
||||
Method 1: Use polar coordinates. (See in homework)
|
||||
|
||||
Method 2: Use the fact that $\log(\zeta)$ is the inverse of $e^\zeta$.
|
||||
Method 2: Use the fact that $\log(z)$ is the inverse of $e^z$.
|
||||
|
||||
Suppose $h=s+it$, $e^h=e^s(\cos t+i\sin t)$, $e^h-1=e^s(\cos t-1)+i\sin t$. So
|
||||
|
||||
|
||||
Reference in New Issue
Block a user