update notations and fix typos
This commit is contained in:
@@ -4,7 +4,7 @@
|
||||
|
||||
### Power Series
|
||||
|
||||
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ be a power series.
|
||||
Let $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ be a power series.
|
||||
|
||||
#### Radius of Convergence
|
||||
|
||||
@@ -18,11 +18,11 @@ $$
|
||||
|
||||
### Derivative of Power Series
|
||||
|
||||
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ be a power series.
|
||||
Let $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ be a power series.
|
||||
|
||||
Let $g(\zeta)=\sum_{n=0}^{\infty}na_n(\zeta-\zeta_0)^{n-1}$ be another power series.
|
||||
Let $g(z)=\sum_{n=0}^{\infty}na_n(z-z_0)^{n-1}$ be another power series.
|
||||
|
||||
Then $g$ is holomorphic on $D(\zeta_0,R)$ and $g'(\zeta)=f(\zeta)$ for all $\zeta\in D(\zeta_0,R)$. and $f'(\zeta)=g(\zeta)$.
|
||||
Then $g$ is holomorphic on $D(z_0,R)$ and $g'(z)=f(z)$ for all $z\in D(z_0,R)$. and $f'(z)=g(z)$.
|
||||
|
||||
Proof:
|
||||
|
||||
@@ -30,16 +30,16 @@ Note radius of convergence of $g$ is also $R$.
|
||||
|
||||
$\limsup_{n\to\infty}|na_n|^{1/(n-1)}=\limsup_{n\to\infty}|a_n|^{1/n}$.
|
||||
|
||||
Let $\zeta\in D(\zeta_0,R)$.
|
||||
Let $z\in D(z_0,R)$.
|
||||
|
||||
let $|\zeta-\zeta_0|<\rho<R$.
|
||||
let $|z-z_0|<\rho<R$.
|
||||
|
||||
Without loss of generality, assume $\zeta_0=0$. Let $|w|<\rho$.
|
||||
Without loss of generality, assume $z_0=0$. Let $|w|<\rho$.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{f(\zeta)-f(w)}{\zeta-w}-g(\zeta)&=\sum_{n=0}^{\infty}\left[\frac{1}{\zeta-w}\left(a_n(\zeta^n-w^n)\right)-na_n\zeta^{n-1}\right] \\
|
||||
&=\sum_{n=0}^{\infty}a_n\left[\frac{\zeta^n-w^n}{\zeta-w}-n\zeta^{n-1}\right]
|
||||
\frac{f(z)-f(w)}{z-w}-g(z)&=\sum_{n=0}^{\infty}\left[\frac{1}{z-w}\left(a_n(z^n-w^n)\right)-na_nz^{n-1}\right] \\
|
||||
&=\sum_{n=0}^{\infty}a_n\left[\frac{z^n-w^n}{z-w}-nz^{n-1}\right]
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
@@ -47,24 +47,24 @@ Notice that
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{\zeta^n-w^n}{\zeta-w}&=\sum_{k=0}^{n-1}\zeta^{n-1-k}w^k \\
|
||||
&=\zeta^{n-1}+\zeta^{n-2}w+\cdots+w^{n-1}
|
||||
\frac{z^n-w^n}{z-w}&=\sum_{k=0}^{n-1}z^{n-1-k}w^k \\
|
||||
&=z^{n-1}+z^{n-2}w+\cdots+w^{n-1}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Since
|
||||
|
||||
$$
|
||||
|w^k-\zeta^k|=\left|(w-\zeta)\left(\sum_{j=0}^{k-1}w^{k-1-j}\zeta^j\right)\right|\leq|w-\zeta|k\rho^{k-1}
|
||||
|w^k-z^k|=\left|(w-z)\left(\sum_{j=0}^{k-1}w^{k-1-j}z^j\right)\right|\leq|w-z|k\rho^{k-1}
|
||||
$$
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{\zeta^n-w^n}{\zeta-w}-n\zeta^{n-1}&=(\zeta^{n-1}-\zeta^{n-1})+(\zeta^{n-2}w-\zeta^{n-1})+\cdots+(\zeta w^{n-1}-\zeta^{n-1}) \\
|
||||
&=\zeta^{n-2}(w-\zeta)+\zeta^{n-3}(w^2-\zeta^2)+\cdots+\zeta^0(w^{n-1}-\zeta^{n-1}) \\
|
||||
&=\sum_{k=0}^{n-1}\zeta^{n-1-k}(w^k-\zeta^k)\\
|
||||
&\leq\sum_{k=0}^{n-1}\zeta^{n-1-k}|w-\zeta|k\rho^{k-1} \\
|
||||
&\leq|w-\zeta|\sum_{k=0}^{n-1}k\rho^{k-1} \\
|
||||
\frac{z^n-w^n}{z-w}-nz^{n-1}&=(z^{n-1}-z^{n-1})+(z^{n-2}w-z^{n-1})+\cdots+(z w^{n-1}-z^{n-1}) \\
|
||||
&=z^{n-2}(w-z)+z^{n-3}(w^2-z^2)+\cdots+z^0(w^{n-1}-z^{n-1}) \\
|
||||
&=\sum_{k=0}^{n-1}z^{n-1-k}(w^k-z^k)\\
|
||||
&\leq\sum_{k=0}^{n-1}z^{n-1-k}|w-z|k\rho^{k-1} \\
|
||||
&\leq|w-z|\sum_{k=0}^{n-1}k\rho^{k-1} \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
@@ -72,13 +72,13 @@ Apply absolute value,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\left|\frac{f(\zeta)-f(w)}{\zeta-w}-g(\zeta)\right|&\leq\sum_{n=0}^{\infty}|a_n||w-\zeta|\left[\sum_{k=1}^{n-1}\rho^{n-1-k}k\rho^{k-1}\right] \\
|
||||
&=|w-\zeta|\sum_{n=0}^{\infty}|a_n|\left[\sum_{k=1}^{n-1}\rho^{n-2}k\right] \\
|
||||
&=|w-\zeta|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \\
|
||||
\left|\frac{f(z)-f(w)}{z-w}-g(z)\right|&\leq\sum_{n=0}^{\infty}|a_n||w-z|\left[\sum_{k=1}^{n-1}\rho^{n-1-k}k\rho^{k-1}\right] \\
|
||||
&=|w-z|\sum_{n=0}^{\infty}|a_n|\left[\sum_{k=1}^{n-1}\rho^{n-2}k\right] \\
|
||||
&=|w-z|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Using Cauchy-Hadamard theorem, the radius of convergence of $\sum_{n=0}^{\infty}\frac{ n(n-1)}{2}|a_n|\zeta^{n-2}$ is at least
|
||||
Using Cauchy-Hadamard theorem, the radius of convergence of $\sum_{n=0}^{\infty}\frac{ n(n-1)}{2}|a_n|z^{n-2}$ is at least
|
||||
|
||||
$$
|
||||
1/\limsup_{n\to\infty}\left[\frac{n(n-1)}{2}|a_n|\right]^{1/(n-1)}=R.
|
||||
@@ -87,63 +87,65 @@ $$
|
||||
Therefore,
|
||||
|
||||
$$
|
||||
|w-\zeta|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \leq C|w-\zeta|
|
||||
|w-z|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \leq C|w-z|
|
||||
$$
|
||||
|
||||
where $C$ is dependent on $\rho$.
|
||||
|
||||
So $lim_{w\to\zeta}\left|\frac{f(\zeta)-f(w)}{\zeta-w}-g(\zeta)\right|=0$. as desired.
|
||||
So $\lim_{w\to z}\left|\frac{f(z)-f(w)}{z-w}-g(z)\right|=0$. as desired.
|
||||
|
||||
QED
|
||||
|
||||
#### Corollary of power series
|
||||
|
||||
If $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ in $D(\zeta_0,R)$, then $a_0=f(\zeta_0), a_1=f'(\zeta_0)/1!, a_2=f''(\zeta_0)/2!$, etc.
|
||||
If $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ in $D(z_0,R)$, then $a_0=f(z_0), a_1=f'(z_0)/1!, a_2=f''(z_0)/2!$, etc.
|
||||
|
||||
#### Definition (Analytic)
|
||||
|
||||
A function $h$ on an open set $U\subset\mathbb{C}$ is called analytic if for every $\zeta\in U$, $\exists \epsilon>0$ such that on $D(\zeta,\epsilon)\subset U$, $h$ can be represented as a power series $\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$.
|
||||
A function $h$ on an open set $U\subset\mathbb{C}$ is called analytic if for every $z\in U$, $\exists \epsilon>0$ such that on $D(z,\epsilon)\subset U$, $h$ can be represented as a power series $\sum_{n=0}^{\infty}a_n(z-z_0)^n$.
|
||||
|
||||
#### Theorem (Analytic implies holomorphic)
|
||||
|
||||
If $f$ is analytic on $U$, then $f$ is holomorphic on $U$.
|
||||
|
||||
$\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(\zeta)^n$
|
||||
$\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(z)^n$
|
||||
|
||||
Radius of convergence is $\infty$.
|
||||
|
||||
So $f(0)=1=ce^0=c$
|
||||
|
||||
$\sum_{n=0}^{\infty}\frac{1}{n}\zeta^n$
|
||||
$\sum_{n=0}^{\infty}\frac{1}{n}z^n$
|
||||
|
||||
Radius of convergence is $1$.
|
||||
|
||||
$f'=\sum_{n=1}^{\infty}\zeta^{n-1}=\frac{1}{1-\zeta}$ (Geometric series)
|
||||
$f'=\sum_{n=1}^{\infty}z^{n-1}=\frac{1}{1-z}$ (Geometric series)
|
||||
|
||||
So $g(\zeta)=c+\log(\frac{1}{1-\zeta})=c+2\pi k i=\log(\frac{1}{1-\zeta})+2\pi k i$
|
||||
So $g(z)=c+\log(\frac{1}{1-z})=c+2\pi k i=\log(\frac{1}{1-z})+2\pi k i$
|
||||
|
||||
#### Cauchy Product of power series
|
||||
|
||||
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n\zeta^n$ and $g(\zeta)=\sum_{n=0}^{\infty}b_n\zeta^n$ be two power series.
|
||||
Let $f(z)=\sum_{n=0}^{\infty}a_nz^n$ and $g(z)=\sum_{n=0}^{\infty}b_nz^n$ be two power series.
|
||||
|
||||
Then $f(\zeta)g(\zeta)=\sum_{n=0}^{\infty}=\sum_{n=0}^{\infty}c_n\zeta^n=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}\zeta^n$
|
||||
Then $f(z)g(z)=\sum_{n=0}^{\infty}=\sum_{n=0}^{\infty}c_nz^n=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}z^n$
|
||||
|
||||
#### Theorem of radius of convergence of Cauchy product
|
||||
|
||||
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n\zeta^n$ and $g(\zeta)=\sum_{n=0}^{\infty}b_n\zeta^n$ be two power series.
|
||||
Let $f(z)=\sum_{n=0}^{\infty}a_nz^n$ and $g(z)=\sum_{n=0}^{\infty}b_nz^n$ be two power series.
|
||||
|
||||
Then the radius of convergence of $f(\zeta)g(\zeta)$ is at least $\min(R_f,R_g)$.
|
||||
Then the radius of convergence of $f(z)g(z)$ is at least $\min(R_f,R_g)$.
|
||||
|
||||
Without loss of generality, assume $\zeta_0=0$.
|
||||
Without loss of generality, assume $z_0=0$.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\left(\sum_{j=0}^{N}a_j\zeta^j\right)\left(\sum_{k=0}^{N}b_k\zeta^k\right)-\sum_{l=0}^{N}c_l\zeta^l&=\sum_{j=0}^{N}\sum_{k=N-j}^{N}a_jb_k\zeta^{j+k}\\
|
||||
&\leq\sum_{N/2\leq\max(j,k)\leq N}|a_j||b_k||\zeta^{j+k}|\\
|
||||
&\leq\left(\sum_{j=N/2}^{N}|a_j||\zeta^j|\right)\left(\sum_{k=0}^{\infty}|b_k||\zeta^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||\zeta^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||\zeta^k|\right)\\
|
||||
\left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l&=\sum_{j=0}^{N}\sum_{k=N-j}^{N}a_jb_kz^{j+k}\\
|
||||
&\leq\sum_{N/2\leq\max(j,k)\leq N}|a_j||b_k||z^{j+k}|\\
|
||||
&\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Since $\sum_{j=0}^{\infty}|a_j||\zeta^j|$ and $\sum_{k=0}^{\infty}|b_k||\zeta^k|$ are convergent, and $\sum_{j=N/2}^{N}|a_j||\zeta^j|$ and $\sum_{k=N/2}^{\infty}|b_k||\zeta^k|$ converges to zero.
|
||||
Since $\sum_{j=0}^{\infty}|a_j||z^j|$ and $\sum_{k=0}^{\infty}|b_k||z^k|$ are convergent, and $\sum_{j=N/2}^{N}|a_j||z^j|$ and $\sum_{k=N/2}^{\infty}|b_k||z^k|$ converges to zero.
|
||||
|
||||
So $\left|\left(\sum_{j=0}^{N}a_j\zeta^j\right)\left(\sum_{k=0}^{N}b_k\zeta^k\right)-\sum_{l=0}^{N}c_l\zeta^l\right|\leq\left(\sum_{j=N/2}^{N}|a_j||\zeta^j|\right)\left(\sum_{k=0}^{\infty}|b_k||\zeta^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||\zeta^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||\zeta^k|\right)\to 0$ as $N\to\infty$.
|
||||
So $\left|\left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l\right|\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\to 0$ as $N\to\infty$.
|
||||
|
||||
So $\sum_{n=0}^{\infty}c_n\zeta^n$ converges to $f(\zeta)g(\zeta)$ on $D(0,R_fR_g)$.
|
||||
So $\sum_{n=0}^{\infty}c_nz^n$ converges to $f(z)g(z)$ on $D(0,R_fR_g)$.
|
||||
|
||||
Reference in New Issue
Block a user